
Arduino	MIDI
Pieter	P, 08-03-2017

This	is	a	guide	that	covers	the	basics	of	the	Musical	Instrument	Digital	Interface	(MIDI)	protocol
and	its	implementation	on	the	Arduino	platform.
The	format	of	the	protocol	is	explained	in	the	first	chapter.	Chapter	two	goes	over	the	hardware.
In	chapter	three,	example	code	for	sending	MIDI	is	presented.	Chapter	four	contains	everything
needed	to	build	a	working	MIDI	controller.	MIDI	input	is	covered	in	chapter	five,	and	chapter	six
extends	this	by	adding	support	for	System	Exclusive	(SysEx)	messages.



The	MIDI	protocol
The	MIDI	specification	can	be	found	here:	https://www.midi.org/specifications/item/the-midi-1-0-specification

The	MIDI	protocol	describes	a	set	of	MIDI	events.	For	example,	a	note	is	played,	or	a	note	is
turned	off,	a	controller	is	moved	and	set	to	a	new	value,	a	new	instrument	is	selected,	etc.	These
events	correspond	to	MIDI	messages	that	can	be	sent	over	the	MIDI	hardware	connection.

There	are	two	main	types	of	messages:	channel	messages	and	system	messages.	Most
performance	information	will	be	sent	as	channel	messages,	while	system	messages	are	used	for
things	like	proprietary	handshakes,	manufacturer-specific	settings,	sending	long	packets	of	data,
real-time	messages	for	synchronization	and	tuning,	and	other	things	that	are	not	really	of
interest	to	someone	who	just	wants	to	make	an	Arduino	MIDI	instrument	or	controller.	That's	why
this	guide	will	mainly	focus	on	channel	messages.

Channel	messages
There	are	16	MIDI	channels.	Each	MIDI	instrument	can	play	notes	on	one	of	these	channels,	and
they	can	apply	different	voices	or	patches	to	different	channels,	as	well	as	setting	some
controllers	like	volume,	pan,	balance,	sustain	pedal,	pitch	bend,	etc.	
MIDI	messages	that	target	a	specific	channel	are	called	channel	messages.

A	MIDI	channel	message	consist	of	a	header	byte,	referred	to	as	the	status	byte,	followed	by	one
or	two	data	bytes:

Status ─ Data		

Status ─ Data	1─	 Data	2

Each	byte	consists	of	8	binary	digits.	To	distinguish	between	status	and	data	bytes,	and	to
prevent	framing	errors,	status	bytes	have	the	most	significant	bit	(msb)	set	to	one	(1),	and	data
bytes	have	the	msb	set	to	zero	(0).

Status	byte Data	byte	1 Data	byte	2	(optional)
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Value 1 x x x x x x x 0 x x x x x x x 0 x x x x x x x

Status	bytes

The	status	byte	of	channel	messages	is	divided	into	two	4-bit	nibbles.	The	high	nibble	(bits	4-7)
specifies	the	message	type,	and	the	low	nibble	(bits	0-3)	specifies	the	MIDI	channel.	Because	the
most	significant	bit	has	to	be	one,	there	are	8	different	message	types	(0b1000	-	0b1111	or	0x8	-
0xF),	and	16	different	channels	(0x0	-	0xF).	Message	type	0xF	is	used	for	system	messages,	so	it
won't	be	covered	in	this	section	on	channel	messages.

Status	byte
Bit 7 6 5 4 3 2 1 0
Value m m m m n n n n
Where	mmmm	is	the	message	type	(0x8	-	0xE)	and	nnnn	is	the	channel	nibble.	
Note	that	the	channels	start	from	nnnn	=	0	for	MIDI	channel	1.	(nnnn	=	channel	-	1)

Data	bytes

Each	data	byte	contains	a	7-bit	value,	a	number	between	0	and	127	(0b01111111	or	0x7F).	The
meaning	of	this	value	depends	on	the	message	type.	For	example,	it	can	tell	the	receiver	what
note	is	played,	how	hard	the	key	was	struck,	what	instrument	to	select,	what	value	a	controller	is
set	to,	etc.

Channel	Messages:	message	types

The	following	section	will	go	over	the	different	channel	messages	and	their	status	and	data
bytes.	
Keep	in	mind	that	nnnn	=	channel	-	1.



Note	Off	(0x8)

A	note	off	event	is	used	to	stop	a	playing	note.	For	example,	when	a	key	is	released.

Data	1	(0b0kkkkkkk): 	Note	number	(key).	See	MIDI	note	names.	
Data	2	(0b0vvvvvvv): 	Velocity	(how	fast	the	key	is	released).

A	velocity	of	0	is	not	defined,	and	some	software	or	devices	may	not	register	the	note	off
event	if	the	velocity	is	zero.
Most	software	or	devices	will	ignore	the	note	off	velocity.
Instead	of	a	note	off	event,	a	note	on	event	with	a	velocity	of	zero	may	be	used.	This	is
especially	useful	when	using	a	running	status.

Status	byte Note	number Velocity
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Value 1 0 0 0 n n n n 0 k k k k k k k 0 v v v v v v v

Note	On	(0x9)

A	note	on	event	is	used	to	play	a	note.	For	example,	when	a	key	is	pressed.

Data	1	(0b0kkkkkkk): 	Note	number	(key).	See	MIDI	note	names.	
Data	2	(0b0vvvvvvv): 	Velocity	(how	fast/hard	the	key	is	pressed).

If	the	velocity	is	zero,	the	note	on	event	is	interpreted	as	a	note	off	event.	This	is	especially
useful	when	using	a	running	status.

Status	byte Note	number Velocity
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Value 1 0 0 1 n n n n 0 k k k k k k k 0 v v v v v v v

Polyphonic	key	pressure	(0xA)

A	polyphonic	key	pressure	event	is	used	when	the	pressure	on	a	key	or	a	pressure	sensitive	pad
changes	after	the	note	on	event.

Data	1	(0b0kkkkkkk): 	Note	number	(key).	See	MIDI	note	names.	
Data	2	(0b0vvvvvvv): 	Pressure	on	the	key.

Most	normal	MIDI	keyboards	do	not	implement	this	event.
Key	pressure	is	sometimes	referred	to	as	after-touch	or	after-pressure.

Status	byte Note	number Pressure
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Value 1 0 1 0 n n n n 0 k k k k k k k 0 v v v v v v v

Control	change	(0xB)

A	control	change	event	is	used	when	the	value	of	a	controller	changes.

Data	1	(0b0ccccccc): 	Controller	number.	See	Controller	numbers.	
Data	2	(0b0vvvvvvv): 	The	value	of	the	controller.

Controller	numbers	120-127	are	reserved	as	"Channel	Mode	Messages".

Status	byte Controller	number Value
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Value 1 0 1 1 n n n n 0 c c c c c c c 0 v v v v v v v

Program	change	(0xC)

A	program	change	event	is	used	to	change	the	program	(i.e.	sound,	voice,	tone,	preset	or	patch)
of	a	given	channel	is	changed.

Data	1	(0b0ppppppp): 	Program	number.	See	Program	numbers.	



Controller	numbers	120-127	are	reserved	as	"Channel	Mode	Messages".

Status	byte Program	number
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Value 1 1 0 0 n n n n 0 c c c c c c c

Channel	pressure	(0xD)

A	channel	pressure	event	is	used	when	the	pressure	on	a	key	or	a	pressure	sensitive	pad
changes	after	the	note	on	event.	Unlike	polyphonic	key	pressure,	channel	pressure	affects	all
notes	playing	on	the	channel.

Data	1	(0b0vvvvvvv): 	Pressure	value.

Most	normal	MIDI	keyboards	do	not	implement	this	event.
Channel	pressure	is	sometimes	referred	to	as	after-touch	or	after-pressure.

Status	byte Pressure
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Value 1 1 0 1 n n n n 0 v v v v v v v

Pitch	bend	change	(0xE)

A	pitch	bend	change	event	is	used	to	alter	the	pitch	of	the	notes	played	on	a	given	channel.

Data	1	(0b0lllllll): 	Least	significant	byte	(bits	0-7)	of	the	pitch	bend	value.	
Data	2	(0b0mmmmmmm): 	Most	significant	byte	(bits	8-13)	of	the	pitch	bend	value.

The	center	position	(no	pitch	change)	is	represented	by	LSB	=	0x0,	MSB	=	0x40

Status	byte LSB MSB
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Value 1 1 1 0 n n n n 0 l l l l l l l 0 m m m m m m m

Running	status

There	are	a	lot	of	circumstances	where	you	have	to	send	many	messages	of	the	same	type.	For
example,	if	you	have	a	digital	keyboard,	pretty	much	all	messages	will	be	note	on	and	note	off
events,	or	when	you	turn	a	knob	on	a	MIDI	controller,	a	lot	of	control	change	messages	will	be
sent	to	update	the	controller	value.	To	save	bandwidth	in	these	kinds	of	situations,	you	only	have
to	send	the	status	byte	once,	followed	by	only	data	bytes.	This	technique	is	called	"running
status".	
Because	note	on	events	are	most	likely	to	be	followed	by	note	off	events	(or	more	note	on
events),	the	MIDI	standard	allows	you	to	use	a	note	on	event	with	a	velocity	of	zero	instead	of	a
note	off	event.	This	means	that	you	only	need	one	status	byte	for	all	note	events,	drastically
reducing	the	data	throughput,	thus	minimizing	the	delay	between	events.

System	Messages

System	messages	are	MIDI	messages	that	do	not	carry	data	for	a	specific	MIDI	channel.	There
are	three	types	of	system	messages:

System	Common	Messages

System	Common	messages	are	intended	for	all	receivers	in	the	system.	
These	messages	are	beyond	the	scope	of	this	guide.	If	you	want	more	information,	refer	to	page
27	of	the	MIDI	1.0	Detailed	Specification	4.2.

MIDI	Time	Code	Quarter	Frame	(0xF1)
Song	Position	Pointer	(0xF2)
Song	Select	(0xF3)
Tune	Request	(0xF6)
EOX	(End	of	Exclusive)	(0xF7)



System	Real	Time	Messages

System	Real	Time	messages	are	used	for	synchronization	between	clock-based	MIDI
components.	
These	messages	are	beyond	the	scope	of	this	guide.	If	you	want	more	information,	refer	to	page
30	of	the	MIDI	1.0	Detailed	Specification	4.2.

Timing	Clock	(0xF8)
Start	(0xFA)
Continue	(0xFB)
Stop	(0xFC)
Active	Sensing	(0xFE)
System	Reset	(0xFF)

System	Exclusive	Messages

System	Exclusive	(SysEx)	messages	are	used	for	things	like	setting	synthesizer	or	patch	settings,
sending	sampler	data,	memory	dumps,	etc.	
Most	SysEx	messages	are	manufacturer-specific,	so	it	is	best	to	consult	the	MIDI	implementation
in	the	manual.	If	you	want	more	information	on	the	topic,	you	can	find	it	on	page	34	of	the	MIDI
1.0	Detailed	Specification	4.2.	

A	system	exclusive	message	starts	with	a	status	byte	0xF0,	followed	by	an	arbitrary	number	of
data	bytes,	and	ends	with	another	status	byte	0xF7.

SysEx	start Data … SysEx	end
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 … 7 6 5 4 3 2 1 0
Value 1 1 1 1 0 0 0 0 0 d d d d d d d … 1 1 1 1 0 1 1 1

Appendices
All	numbers	are	in	hexadecimal	representation,	unless	otherwise	specified.

MIDI	note	names

Middle	C	or	C4	is	defined	as	MIDI	note	0x3C.	
The	lowest	note	on	a	standard	88-key	piano	is	A0	(0x15)	and	the	highest	note	is	C8	(0x6C).

Note
Octave C C# D D# E F F# G G# A A# B

-1 00 01 02 03 04 05 06 07 08 09 0A 0B
0 0C 0D 0E 0F 10 11 12 13 14 15 16 17
1 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23
2 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
3 30 31 32 33 34 35 36 37 38 39 3A 3B
4 3C 3D 3E 3F 40 41 42 43 44 45 46 47
5 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53
6 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
7 60 61 62 63 64 65 66 67 68 69 6A 6B
8 6C 6D 6E 6F 70 71 72 73 74 75 76 77
9 78 79 7A 7B 7C 7D 7E 7F

Controller	numbers

This	is	an	overview	of	the	MIDI	controller	numbers	that	can	be	used	as	the	first	data	byte	of	a
control	change	event.	
The	second	data	byte	is	the	value	for	the	controller.	This	value	is	7	bits	wide,	so	has	a	range	of
[0,	127].	Controller	numbers	0x00-0x1F	can	be	combined	with	numbers	0x20-0x3F	for	14-bit
resolution.	In	this	case,	numbers	0x00-0x1F	set	the	MSB,	and	numbers	0x20-0x3F	the	LSB.	
Controller	numbers	120-127	are	reserved	for	Channel	Mode	Messages,	which	rather	than
controlling	sound	parameters,	affect	the	channel's	operating	mode.
Controller Function Value Used



Dec Hex as
0 00 Bank	Select 00-7F MSB
1 01 Modulation	Wheel	or	Lever 00-7F MSB
2 02 Breath	Controller 00-7F MSB
3 03 Undefined 00-7F MSB
4 04 Foot	Controller 00-7F MSB
5 05 Portamento	Time 00-7F MSB
6 06 Data	Entry	MSB 00-7F MSB
7 07 Channel	Volume	(formerly	Main	Volume) 00-7F MSB
8 08 Balance 00-7F MSB
9 09 Undefined 00-7F MSB
10 0A Pan 00-7F MSB
11 0B Expression	Controller 00-7F MSB
12 0C Effect	Control	1 00-7F MSB
13 0D Effect	Control	2 00-7F MSB
14 0E Undefined 00-7F MSB
15 0F Undefined 00-7F MSB
16 10 General	Purpose	Controller	1 00-7F MSB
17 11 General	Purpose	Controller	2 00-7F MSB
18 12 General	Purpose	Controller	3 00-7F MSB
19 13 General	Purpose	Controller	4 00-7F MSB
20 14 Undefined 00-7F MSB
21 15 Undefined 00-7F MSB
22 16 Undefined 00-7F MSB
23 17 Undefined 00-7F MSB
24 18 Undefined 00-7F MSB
25 19 Undefined 00-7F MSB
26 1A Undefined 00-7F MSB
27 1B Undefined 00-7F MSB
28 1C Undefined 00-7F MSB
29 1D Undefined 00-7F MSB
30 1E Undefined 00-7F MSB
31 1F Undefined 00-7F MSB
32 20 LSB	for	Control	0	(Bank	Select) 00-7F LSB
33 21 LSB	for	Control	1	(Modulation	Wheel	or	Lever) 00-7F LSB
34 22 LSB	for	Control	2	(Breath	Controller) 00-7F LSB
35 23 LSB	for	Control	3	(Undefined) 00-7F LSB
36 24 LSB	for	Control	4	(Foot	Controller) 00-7F LSB
37 25 LSB	for	Control	5	(Portamento	Time) 00-7F LSB
38 26 LSB	for	Control	6	(Data	Entry) 00-7F LSB
39 27 LSB	for	Control	7	(Channel	Volume,	formerly	Main	Volume) 00-7F LSB
40 28 LSB	for	Control	8	(Balance) 00-7F LSB
41 29 LSB	for	Control	9	(Undefined) 00-7F LSB
42 2A LSB	for	Control	10	(Pan) 00-7F LSB
43 2B LSB	for	Control	11	(Expression	Controller) 00-7F LSB
44 2C LSB	for	Control	12	(Effect	control	1) 00-7F LSB
45 2D LSB	for	Control	13	(Effect	control	2) 00-7F LSB
46 2E LSB	for	Control	14	(Undefined) 00-7F LSB
47 2F LSB	for	Control	15	(Undefined) 00-7F LSB
48 30 LSB	for	Control	16	(General	Purpose	Controller	1) 00-7F LSB
49 31 LSB	for	Control	17	(General	Purpose	Controller	2) 00-7F LSB
50 32 LSB	for	Control	18	(General	Purpose	Controller	3) 00-7F LSB



51 33 LSB	for	Control	19	(General	Purpose	Controller	4) 00-7F LSB
52 34 LSB	for	Control	20	(Undefined) 00-7F LSB
53 35 LSB	for	Control	21	(Undefined) 00-7F LSB
54 36 LSB	for	Control	22	(Undefined) 00-7F LSB
55 37 LSB	for	Control	23	(Undefined) 00-7F LSB
56 38 LSB	for	Control	24	(Undefined) 00-7F LSB
57 39 LSB	for	Control	25	(Undefined) 00-7F LSB
58 3A LSB	for	Control	26	(Undefined) 00-7F LSB
59 3B LSB	for	Control	27	(Undefined) 00-7F LSB
60 3C LSB	for	Control	28	(Undefined) 00-7F LSB
61 3D LSB	for	Control	29	(Undefined) 00-7F LSB
62 3E LSB	for	Control	30	(Undefined) 00-7F LSB
63 3F LSB	for	Control	31	(Undefined) 00-7F LSB
64 40 Damper	Pedal	on/off	(Sustain) ≤3F	off,	≥40	on ---
65 41 Portamento	On/Off ≤3F	off,	≥40	on ---
66 42 Sostenuto	On/Off ≤3F	off,	≥40	on ---

67 43 Soft	Pedal	On/Off ≤3F	off,	≥40	on ---

68 44 Legato	Footswitch ≤3F	Normal,	≥40
Legato ---

69 45 Hold	2 ≤3F	off,	≥40	on ---
70 46 Sound	Controller	1	(default:	Sound	Variation) 00-7F LSB
71 47 Sound	Controller	2	(default:	Timbre/Harmonic	Intens.) 00-7F LSB
72 48 Sound	Controller	3	(default:	Release	Time) 00-7F LSB
73 49 Sound	Controller	4	(default:	Attack	Time) 00-7F LSB
74 4A Sound	Controller	5	(default:	Brightness) 00-7F LSB
75 4B Sound	Controller	6	(default:	Decay	Time	-	see	MMA	RP-021) 00-7F LSB
76 4C Sound	Controller	7	(default:	Vibrato	Rate	-	see	MMA	RP-021) 00-7F LSB
77 4D Sound	Controller	8	(default:	Vibrato	Depth	-	see	MMA	RP-021) 00-7F LSB
78 4E Sound	Controller	9	(default:	Vibrato	Delay	-	see	MMA	RP-021) 00-7F LSB
79 4F Sound	Controller	10	(default	undefined	-	see	MMA	RP-021) 00-7F LSB
80 50 General	Purpose	Controller	5 00-7F LSB
81 51 General	Purpose	Controller	6 00-7F LSB
82 52 General	Purpose	Controller	7 00-7F LSB
83 53 General	Purpose	Controller	8 00-7F LSB
84 54 Portamento	Control 00-7F LSB
85 55 Undefined --- ---
86 56 Undefined --- ---
87 57 Undefined --- ---
88 58 High	Resolution	Velocity	Prefix 00-7F LSB
89 59 Undefined --- ---
90 5A Undefined --- ---

91 5B Effects	1	Depth	(default:	Reverb	Send	Level	-	see	MMA	RP-023)
(formerly	ExternalEffects	Depth) 00-7F ---

92 5C Effects	2	Depth	(formerly	Tremolo	Depth) 00-7F ---

93 5D Effects	3	Depth	(default:	Chorus	Send	Level	-	see	MMA	RP-023)
(formerly	Chorus	Depth) 00-7F ---

94 5E Effects	4	Depth	(formerly	Celeste	[Detune]	Depth) 00-7F ---
95 5F Effects	5	Depth	(formerly	Phaser	Depth) 00-7F ---
96 60 Data	Increment	(Data	Entry	+1)	(see	MMA	RP-018) N/A ---
97 61 Data	Decrement	(Data	Entry	-1)	(see	MMA	RP-018) N/A ---
98 62 Non-Registered	Parameter	Number	(NRPN)	-	LSB 00-7F LSB
99 63 Non-Registered	Parameter	Number	(NRPN)	-	MSB 00-7F MSB
100 64 Registered	Parameter	Number	(RPN)	-	LSB* 00-7F LSB



101 65 Registered	Parameter	Number	(RPN)	-	MSB* 00-7F MSB
102 66 Undefined --- ---
103 67 Undefined --- ---
104 68 Undefined --- ---
105 69 Undefined --- ---
106 6A Undefined --- ---
107 6B Undefined --- ---
108 6C Undefined --- ---
109 6D Undefined --- ---
110 6E Undefined --- ---
111 6F Undefined --- ---
112 70 Undefined --- ---
113 71 Undefined --- ---
114 72 Undefined --- ---
115 73 Undefined --- ---
116 74 Undefined --- ---
117 75 Undefined --- ---
118 76 Undefined --- ---
119 77 Undefined --- ---

Channel
mode Function Value
Dec Hex
120 78 All	Sound	Off 00
121 79 Reset	All	Controllers 00
122 7A Local	Control	On/Off 00	off,	7F	on
123 7B All	Notes	Off 00

124 7C Omni	Mode	Off	(+	all
notes	off) 00

125 7D Omni	Mode	On	(+	all
notes	off) 00

126 7E Mono	Mode	On	(+	poly
off,	+	all	notes	off)

Note:	This	equals	the	number	of	channels,	or	zero	if	the	number	of
channels	equals	the	number	of	voices	in	the	receiver.

127 7F Poly	Mode	On	(+	mono
off,	+	all	notes	off) 0

Source

Program	numbers

The	MIDI	specification	doesn't	specify	instruments	or	voices	for	program	numbers.	The	General
MIDI	1	sound	set	does	define	a	list	of	sounds	and	families	of	sounds.
Program Family	Name
1-8 Piano
9-16 Chromatic	Percussion
17-24 Organ
25-32 Guitar
33-40 Bass
41-48 Strings
49-56 Ensemble
57-64 Brass
65-72 Reed
73-80 Pipe
81-88 Synth	Lead
89-96 Synth	Pad

97-104 Synth	Effects



105-112 Ethnic
113-120 Percussive
121-128 Sound	Effects

Program Instrument	Name
1 Acoustic	Grand	Piano
2 Bright	Acoustic	Piano
3 Electric	Grand	Piano
4 Honky-tonk	Piano
5 Electric	Piano	1
6 Electric	Piano	2
7 Harpsichord
8 Clavi
9 Celesta
10 Glockenspiel
11 Music	Box
12 Vibraphone
13 Marimba
14 Xylophone
15 Tubular	Bells
16 Dulcimer
17 Drawbar	Organ
18 Percussive	Organ
19 Rock	Organ
20 Church	Organ
21 Reed	Organ
22 Accordion
23 Harmonica
24 Tango	Accordion
25 Acoustic	Guitar	(nylon)
26 Acoustic	Guitar	(steel)
27 Electric	Guitar	(jazz)
28 Electric	Guitar	(clean)
29 Electric	Guitar	(muted)
30 Overdriven	Guitar
31 Distortion	Guitar
32 Guitar	harmonics
33 Acoustic	Bass
34 Electric	Bass	(finger)
35 Electric	Bass	(pick)
36 Fretless	Bass
37 Slap	Bass	1
38 Slap	Bass	2
39 Synth	Bass	1
40 Synth	Bass	2
41 Violin
42 Viola
43 Cello
44 Contrabass
45 Tremolo	Strings
46 Pizzicato	Strings
47 Orchestral	Harp
48 Timpani



49 String	Ensemble	1
50 String	Ensemble	2
51 SynthStrings	1
52 SynthStrings	2
53 Choir	Aahs
54 Voice	Oohs
55 Synth	Voice
56 Orchestra	Hit
57 Trumpet
58 Trombone
59 Tuba
60 Muted	Trumpet
61 French	Horn
62 Brass	Section
63 SynthBrass	1
64 SynthBrass	2
65 Soprano	Sax
66 Alto	Sax
67 Tenor	Sax
68 Baritone	Sax
69 Oboe
70 English	Horn
71 Bassoon
72 Clarinet
73 Piccolo
74 Flute
75 Recorder
76 Pan	Flute
77 Blown	Bottle
78 Shakuhachi
79 Whistle

80 Ocarina
81 Lead	1	(square)
82 Lead	2	(sawtooth)
83 Lead	3	(calliope)
84 Lead	4	(chiff)
85 Lead	5	(charang)
86 Lead	6	(voice)
87 Lead	7	(fifths)
88 Lead	8	(bass	+	lead)
89 Pad	1	(new	age)
90 Pad	2	(warm)
91 Pad	3	(polysynth)
92 Pad	4	(choir)
93 Pad	5	(bowed)
94 Pad	6	(metallic)
95 Pad	7	(halo)
96 Pad	8	(sweep)
97 FX	1	(rain)
98 FX	2	(soundtrack)
99 FX	3	(crystal)
100 FX	4	(atmosphere)



101 FX	5	(brightness)
102 FX	6	(goblins)
103 FX	7	(echoes)
104 FX	8	(sci-fi)
105 Sitar
106 Banjo
107 Shamisen
108 Koto
109 Kalimba
110 Bag	pipe
111 Fiddle
112 Shanai
113 Tinkle	Bell
114 Agogo
115 Steel	Drums
116 Woodblock
117 Taiko	Drum
118 Melodic	Tom
119 Synth	Drum
120 Reverse	Cymbal

121 Guitar	Fret	Noise
122 Breath	Noise
123 Seashore
124 Bird	Tweet
125 Telephone	Ring
126 Helicopter
127 Applause
128 Gunshot

Source



MIDI	hardware
The	MIDI	hardware	link	is	just	a	5mA	current	loop	that	asynchronously	sends	and	receives	8-bit
bytes	at	a	baud	rate	of	31250	symbols	per	second.	This	means	that	the	Arduino's	hardware	UART
can	be	used	for	transmitting	and	receiving	MIDI.	DIN	5	pin	(180	degree)	female	receptacles	are
used	for	MIDI	in,	out	and	through	connectors.	

This	is	the	original	schematic	that	can	be	found	in	the	1996	MIDI	1.0	Detailed	Specification	4.2:

The	current	loop	consists	of	a	an	open	collector	output	on	the	transmitting	end	(MIDI	out	and
MIDI	through),	and	an	opto-isolator	at	the	receiving	end	(MIDI	in).	When	a	'zero'	is	sent,	the	open
collector	output	sinks	current,	turning	on	the	LED	of	the	opto-isolator.	This	will	in	turn	bring	low
the	open	collector	output	of	the	opto-isolator,	resulting	in	a	low	signal.	
The	reason	for	using	a	current	loop	instead	of	a	voltage,	is	that	the	sender	and	the	receiver	can



be	at	different	potentials,	because	everything	is	galvanically	isolated.	This	also	prevents	ground
loops,	which	can	result	in	noise.	
Note	that	the	ground	and	shielding	(pin	2	on	the	5-pin	DIN	connector)	is	connected	to	the	ground
of	the	MIDI	out	and	through	circuits,	but	not	to	the	ground	of	the	receiver	in	the	MIDI	in	circuit.

The	standard	was	updated	in	2014	to	include	specifications	for	3.3V	MIDI	devices.	
(	MIDI	1.0	Electrical	Specification	Update	(CA-033)	(2014).	MMA	Technical	Standards	Board	/	AMEI
MIDI	Committee.)

Pin	2	must	be	tied	to	ground	on	the	MIDI	transmitter	
only.	

The	buffer	between	the	UART	transmitter	and	RC is	
optional	and	system-dependent.	

The	UART	is	configured	with	8	data	bits,	no	parity,	and	1	
stop	bit,	or	8-N-1.	

The	resistor	values	depend	on	the	transmission	signaling	
voltage,	VTX,	as	detailed	below.	

The	optional	ferrite	beads	are	1k-ohm	at	100MHz	such	as	
MMZ1608Y102BT	or	similar.

VTX +5V	±	10%	 +3.3V	±	5%

RA 220Ω	5%	0.25W	 33Ω	5%	0.5W

RC 220Ω	5%	0.25W	 10Ω	5%	0.25W

31,250	bits/sec	
UART	Receiver

VTX

RE

RF

N/C	N/C

THRU

RB
220

RD

VRX Optional	MIDI	Thru	Circuit

Choose	RE and	RF based	on	VTX in	the	
same	way	as	described	for	MIDI	Out	RA

and	RC

Opto-Isolator	
such	as	

PC900V	or	6N138

IN

1	

2	

3	
4	

5

1	

2	

3	
4	

5

Do	not	connect	any	pins	of	the	MIDI	IN	jack	
directly	to	ground	 Value	of	RD

depends	on	opto-	
isolator	and	VRX.	

Recommended	value	
is	280Ω	for	PC900V	

with	VRX=5V.

D1	
1N914

FB3	
1K	@100MHz

FB4	
1K	@100MHz

N/C	
N/C

Optional	ferrite	beads	to	
improve	EMI/EMC	
performance

FB5	
1K	@100MHz

FB6	
1K	@100MHz

Optional	ferrite	beads	to	
improve	EMI/EMC	
performance

Reverse	voltage	
protection	for	
opto-isolator

Jack	shield	– N/C	or	
optional	ground	to	improve	
EMI/EMC	performance

Jack	shield	– N/C	or	optional	small	
capacitor	(0.1 µF	typical)	to	improve	

EMI/EMC	performance	

Pin	2	– N/C	or	optional	small	
capacitor	(0.1 µF	typical)	to	
improve RF	grounding



Sending	MIDI	over	Serial
The	easiest	way	to	send	out	MIDI	packets	is	to	use	the	Serial.write(uint8_t	data);	function.	This
function	writes	out	one	8-bit	byte	over	the	Serial	connection	(either	hardware	UART0	or	the
virtual	COM	port	over	USB).
To	send	out	a	MIDI	packet,	we	just	have	to	write	out	the	three	bytes	that	make	up	the	packet:
first	the	status	byte,	then	the	two	data	bytes.

void	sendMIDI(uint8_t	statusByte,	uint8_t	dataByte1,	uint8_t	dataByte2)	{
		Serial.write(statusByte);
		Serial.write(dataByte1);
		Serial.write(dataByte2);
}

In	order	to	support	MIDI	packets	with	only	one	data	byte	as	well,	we	can	just	overload	the
sendMIDI	function.	This	means	that	we	create	two	functions	with	the	same	name,	but	with
different	parameters.

void	sendMIDI(uint8_t	statusByte,	uint8_t	dataByte)	{
		Serial.write(statusByte);
		Serial.write(dataByte);
}

In	its	current	form,	the	sendMIDI	function	is	quite	silly.	Although	it	sends	out	MIDI	packets,	it
doesn't	automatically	create	these	packets	for	us,	we	still	have	to	put	together	the	status	and
data	bytes	ourselves,	and	we	have	to	make	sure	that	it	is	a	valid	MIDI	packet	before	calling
sendMIDI.	Let's	create	a	more	useful	function	that	takes	a	message	type,	channel	number	and
data	as	inputs,	creates	a	MIDI	packet,	and	sends	it	over	the	Serial	port.

void	sendMIDI(uint8_t	messageType,	uint8_t	channel,	uint8_t	data1,	uint8_t	data2)	{
		channel--;		//	Decrement	the	channel,	because	MIDI	channel	1	corresponds	to	binary	channel	0
		uint8_t	statusByte	=	messageType	|	channel;		//	Combine	the	messageType	(high	nibble)	
																																															//	with	the	channel	(low	nibble)
																																															//	Both	the	message	type	and	the	channel	should	be	
4	bits	wide
		Serial.write(statusByte);
		Serial.write(data1);
		Serial.write(data2);
}

We	now	have	a	working	function	that	sends	MIDI	packets,	and	takes	a	somewhat	sensible	input,
not	just	the	bytes	of	the	packet.	But	there's	still	no	guarantee	that	it	is	a	valid	MIDI	message.
Remember	that	the	status	byte	should	have	a	most	significant	bit	equal	to	1,	and	the	data	bytes
a	most	significant	bit	equal	to	0.	We'll	use	some	bitwise	math	to	make	sure	that	this	is	always	the
case,	no	matter	what	data	the	user	enters.

void	sendMIDI(uint8_t	messageType,	uint8_t	channel,	uint8_t	data1,	uint8_t	data2)	{
		channel--;																																			//	Decrement	the	channel,	because	MIDI	channel	1	
																																															//	corresponds	to	binary	channel	0
		uint8_t	statusByte	=	messageType	|	channel;		//	Combine	the	messageType	(high	nibble)	
																																															//	with	the	channel	(low	nibble)
																																															//	Both	the	message	type	and	the	channel
																																															//	should	be	4	bits	wide
		statusByte	|=	0b10000000;																				//	Set	the	most	significant	bit	of	the	status	byte
		data1						&=	0b01111111;																				//	Clear	the	most	significant	bit	of	the	data	
bytes
		data2						&=	0b01111111;
		Serial.write(statusByte);																				//	Send	over	Serial
		Serial.write(data1);
		Serial.write(data2);
}

void	sendMIDI(uint8_t	messageType,	uint8_t	channel,	uint8_t	data)	{
		channel--;																																			//	Decrement	the	channel,	because	MIDI	channel	1	
																																															//	corresponds	to	binary	channel	0
		uint8_t	statusByte	=	messageType	|	channel;		//	Combine	the	messageType	(high	nibble)	
																																															//	with	the	channel	(low	nibble)
																																															//	Both	the	message	type	and	the	channel
																																															//	should	be	4	bits	wide



		statusByte	|=	0b10000000;																				//	Set	the	most	significant	bit	of	the	status	byte
		data							&=	0b01111111;																				//	Clear	the	most	significant	bit	of	the	data	byte
		Serial.write(statusByte);																				//	Send	over	Serial
		Serial.write(data);
}

Before	sending	the	packet,	we	set	the	most	significant	bit	of	the	status	byte	by	performing	a
bitwise	OR	operation:	

0bxsss	ssss
0b1000	0000
-----------	|
0b1sss	ssss

Where	0bsss	ssss	is	the	status,	and	x	is	either	1	or	0.	As	you	can	see,	no	matter	the	value	of	x,	the
result	will	always	be	0b1sss	ssss.	
We	also	clear	the	most	significant	bits	of	the	data	bytes	by	performing	a	bitwise	AND	operation:	

0bxddd	dddd
0b0111	1111
-----------	&
0b0ddd	dddd

Where	0bddd	dddd	is	the	data,	and	x	is	either	1	or	0.	No	matter	what	the	value	of	x	is,	the	result
will	always	be	0b0ddd	dddd	

You	could	go	even	further	by	making	sure	that	the	message	type	and	the	channel	don't	interfere
with	each	other.	However,	that	might	be	overly	defensive.	

void	sendMIDI(uint8_t	messageType,	uint8_t	channel,	uint8_t	data1,	uint8_t	data2)	{
		channel--;																																			//	Decrement	the	channel,	because	MIDI	channel	1	
																																															//	corresponds	to	binary	channel	0
		messageType	&=	0b11110000;																			//	Make	sure	that	only	the	high	nibble	
																																															//	of	the	message	type	is	set
		channel					&=	0b00001111;																			//	Make	sure	that	only	the	low	nibble
																																															//	of	the	channel	is	set
		uint8_t	statusByte	=	messageType	|	channel;		//	Combine	the	messageType	(high	nibble)	
																																															//	with	the	channel	(low	nibble)
																																															//	Both	the	message	type	and	the	channel
																																															//	should	be	4	bits	wide
		statusByte		|=	0b10000000;																			//	Set	the	most	significant	bit	of	the	status	byte
		data1							&=	0b01111111;																			//	Clear	the	most	significant	bit	of	the	data	
bytes
		data2							&=	0b01111111;
		Serial.write(statusByte);																				//	Send	over	Serial
		Serial.write(data1);
		Serial.write(data2);
}

Improving	readability
To	send	a	Control	Change	(0xB0)	message	on	channel	3	for	controller	80	with	a	value	of	64,	you
would	call	sendMIDI(0xB0,	3,	80,	64);
To	make	it	a	little	more	obvious	what's	going	on,	we	could	declare	some	constants	for	the
different	message	types:

const	uint8_t	NOTE_OFF	=	0x80;
const	uint8_t	NOTE_ON	=	0x90;
const	uint8_t	KEY_PRESSURE	=	0xA0;
const	uint8_t	CC	=	0xB0;
const	uint8_t	PROGRAM_CHANGE	=	0xC0;
const	uint8_t	CHANNEL_PRESSURE	=	0xD0;
const	uint8_t	PITCH_BEND	=	0xE0;

You	can	now	use	sendMIDI(CC,	3,	80,	64);	which	will	make	the	code	much	easier	to	read.
When	writing	code,	it's	always	a	good	idea	to	keep	so-called	magic	numbers	to	a	minimum.
These	are	seemingly	arbitrary	numeric	literals	in	your	code	that	don't	have	a	clear	meaning.	
For	example,	this	code	snippet	plays	a	chromatic	glissando	(all	keys,	one	after	the	other)	on	an
honky-tonk	piano:	

sendMIDI(0xC0,	1,	4);
for	(uint8_t	i	=	21;	i	<=	108;	i++)	{
			sendMIDI(0x90,	1,	i,	64);
			delay(100);



			sendMIDI(0x80,	1,	i,	64);
}

To	someone	who	has	never	seen	the	code,	or	someone	who	doesn't	know	all	MIDI	message	type
codes	by	heart,	it's	not	clear	what	all	these	numbers	mean.	A	much	better	sketch	would	be:	

const	uint8_t	honkyTonkPiano	=	4;		//	GM	defines	the	Honky-tonk	Piano	as	instrument	#4

const	uint8_t	note_A1	=	21;		//	lowest	note	on	an	88-key	piano
const	uint8_t	note_C9	=	108;	//	highest	note	on	an	88-key	piano

uint8_t	channel	=	1;				//	MIDI	channel	1
uint8_t	velocity	=	64;		//	64	=	mezzo	forte

sendMIDI(PROGRAM_CHANGE,	channel,	honkyTonkPiano);
for	(uint8_t	note	=	note_A1;	note	<=	note_C9;	note++)	{		//	chromatic	glissando	over	all	88	piano	
keys
		sendMIDI(NOTE_ON,	channel,	note,	velocity);
		delay(100);
		sendMIDI(NOTE_OFF,	channel,	note,	velocity);
}

This	snippet	does	exactly	the	same	thing	as	the	previous	example,	but	it's	much	easier	to	read
and	understand.

Using	structs

Another	approach	would	be	to	compose	the	MIDI	message	in	a	buffer,	and	then	just	write	out
that	buffer.	We	can	define	a	struct	with	the	different	fields	of	a	MIDI	event.	Take	a	look	at	this
struct:	

typedef	struct	MIDI_message_3B	{
		unsigned	int	channel	:	4;			//	second	nibble	:	MIDI	channel	(0-15)
		unsigned	int	status	:	3;				//	first		nibble	:	status	message
		unsigned	int	_msb0	:	1;					//	most	significant	bit	of	status	byte	:	should	be	1	according	to	
MIDI	specification
		unsigned	int	data1	:	7;					//	second	byte			:	first	value
		unsigned	int	_msb1	:	1;					//	most	significant	bit	of	first	data	byte	:	should	be	0	according	
to	MIDI	specification
		unsigned	int	data2	:	7;					//	third		byte			:	second	value
		unsigned	int	_msb2	:	1;					//	most	significant	bit	of	second	data	byte	:	should	be	0	according	
to	MIDI	specification
		MIDI_message_3B()	:	_msb0(1),	_msb1(0),	_msb2(0)	{}		//	set	the	correct	msb's	for	MIDI
};

You	might	have	noticed	that	the	bit	fields	are	in	the	wrong	order:	for	example,	the	normal	order
of	the	status	byte	would	be	1.mmm.cccc	with	mmm	the	message	type	and	cccc	the	channel.
However,	the	order	in	our	struct	is	cccc.mmm.1.	To	understand	what's	going	on,	you	have	to	know
that	Arduinos	are	Little	Endian.	This	means	that	the	first	bit	field	takes	up	the	least	significant
bits	in	each	byte.	In	other	words,	the	bit	fields	within	each	byte	are	in	reversed	order,	compared
to	the	conventional	Big	Endian	notation	(that	is	used	in	the	MIDI	specification).

You	can	now	fill	up	all	fields	of	the	struct,	to	create	a	valid	MIDI	packet.	You	don't	have	to	worry
about	the	most	significant	bits	of	each	byte,	bitmasking	is	done	automatically,	because	of	the	bit
fields.	These	bits	are	set	to	the	correct	value	when	a	message	is	created,	in	the	initializer	list	of
the	constructor.	The	only	thing	you	need	to	keep	in	mind	is	that	the	channels	are	zero-based.
Also	note	that	the	message	types	are	no	longer	0x80,	0x90	etc.,	but	0x8,	0x9	...	

const	uint8_t	NOTE_ON	=	0x9;
								
MIDI_message_3B	msg;	//	Create	a	variable	called	'msg'	of	the	'MIDI_message_3B'	type	we	just	
defined
msg.status		=	NOTE_ON;
msg.channel	=	channel	-	1;		//	MIDI	channels	start	from	0,	so	subtract	1
msg.data1			=	note_A1;
msg.data2			=	velocity;

Finally,	you	can	just	write	out	the	message	over	the	Serial	port.	We'll	create	another	overload	of
the	sendMIDI	function:	



void	sendMIDI(MIDI_message_3B	msg)	{
		Serial.write((uint8_t	*)&msg,	3);
}

We're	using	the	write(uint8_t*	buffer,	size_t	numberOfBytes)	function.	The	first	argument	is	a
pointer	to	a	buffer	(or	array)	of	data	bytes	to	write	out.	The	pointer	points	to	the	first	element	of
this	array.	The	second	argument	is	the	number	of	bytes	to	send,	starting	from	that	first	element.
There's	one	minor	problem:	msg	is	not	an	array,	it's	an	object	of	type	MIDI_message_3B.	The	write
function	expects	a	pointer	to	an	array	of	bytes	(uint8_t).	To	get	around	this,	we	can	just	take	the
address	of	msg,	using	the	address-of	operator	(&)	and	cast	it	to	a	pointer	to	an	array	of	uint8_t's
using	(uint8_t*).	We	need	to	write	out	the	entire	MIDI	packet,	which	is	3	bytes	long,	so	the
second	argument	is	just	3.	
To	use	the	function,	just	use:	

sendMIDI(msg);

In	fact,	we	could	do	even	better.	Now	every	time	the	sendMIDI	function	is	called,	the	msg	object	is
copied.	This	takes	time	and	memory.	To	prevent	it	from	being	copied,	we	can	pass	only	a
reference	to	msg	to	the	function.	Here's	what	that	looks	like:	

void	sendMIDI(MIDI_message_3B	&msg)	{
		Serial.write((uint8_t	*)&msg,	3);
}

sendMIDI(msg);

You	can	do	the	same	thing	for	two-byte	MIDI	packets:	

typedef	struct	MIDI_message_2B	{
		unsigned	int	channel	:	4;			//	second	nibble	:	MIDI	channel	(0-15)
		unsigned	int	status	:	3;				//	first		nibble	:	message	type
		unsigned	int	_msb0	:	1;					//	most	significant	bit	of	status	byte	:	should	be	1	according	to	
MIDI	specification
		unsigned	int	data	:	7;						//	second	byte			:	first	value
		unsigned	int	_msb1	:	1;					//	most	significant	bit	of	first	data	byte	:	should	be	0	according	
to	MIDI	specification
		MIDI_message_2B()	:	_msb0(1),	_msb1(0)	{}		//	set	the	correct	msb's	for	MIDI
};

void	sendMIDI(MIDI_message_2B	&msg)	{
		Serial.write((uint8_t	*)&msg,	2);
}

Running	status

As	discussed	in	chapter	1,	you	can	use	running	statuses	to	save	bandwidth.	The	implementation
is	relatively	easy:	remember	the	last	status	byte	(header)	that	was	sent,	and	then	compare	every
following	status	byte	to	this	header.	If	it's	the	same	status,	send	the	data	bytes	only,	otherwise,
send	the	new	status	byte,	and	remember	this	header.	
To	remember	the	previous	header,	a	static	variable	is	used.	Static	variables	are	not	destroyed
when	they	go	out	of	scope,	so	the	value	is	retained	the	next	time	the	sendMIDIHeader	function	is
executed.	

void	sendMIDIHeader(uint8_t	header)	{
		static	uint8_t	runningHeader	=	0;
		if	(header	!=	runningHeader)	{															//	If	the	new	header	is	different	from	the	
previous
				Serial.write(header);																						//	Send	the	status	byte	over	Serial
				runningHeader	=	header;																				//	Remember	the	new	header
		}
}

void	sendMIDI(uint8_t	messageType,	uint8_t	channel,	uint8_t	data1,	uint8_t	data2)	{
		channel--;																																			//	Decrement	the	channel,	because	MIDI	channel	1
																																															//	corresponds	to	binary	channel	0
		uint8_t	statusByte	=	messageType	|	channel;		//	Combine	the	messageType	(high	nibble)
																																															//	with	the	channel	(low	nibble)



																																															//	Both	the	message	type	and	the	channel
																																															//	should	be	4	bits	wide
		statusByte	|=	0b10000000;																				//	Set	the	most	significant	bit	of	the	status	byte
		data1						&=	0b01111111;																				//	Clear	the	most	significant	bit	of	the	data	
bytes
		data2						&=	0b01111111;

		sendMIDIHeader(statusByte);																		//	Send	the	header	over	Serial,	using	running	
status
		Serial.write(data1);																									//	Send	the	data	bytes	over	Serial
		Serial.write(data2);
}

void	sendMIDI(uint8_t	messageType,	uint8_t	channel,	uint8_t	data)	{
		channel--;																																			//	Decrement	the	channel,	because	MIDI	channel	1
																																															//	corresponds	to	binary	channel	0
		uint8_t	statusByte	=	messageType	|	channel;		//	Combine	the	messageType	(high	nibble)
																																															//	with	the	channel	(low	nibble)
																																															//	Both	the	message	type	and	the	channel
																																															//	should	be	4	bits	wide
		statusByte	|=	0b10000000;																				//	Set	the	most	significant	bit	of	the	status	byte
		data							&=	0b01111111;																				//	Clear	the	most	significant	bit	of	the	data	byte

		sendMIDIHeader(statusByte);																		//	Send	the	header	over	Serial,	using	running	
status
		Serial.write(data);																										//	Send	the	data	byte	over	Serial
}

Going	even	further,	we	can	replace	note	off	events	by	note	on	events	with	a	velocity	of	zero:	

void	sendMIDI(uint8_t	messageType,	uint8_t	channel,	uint8_t	data1,	uint8_t	data2)	{
		if	(messageType	==	NOTE_OFF)	{															//	Replace	note	off	messages
				messageType	=	NOTE_ON;																					//	with	a	note	on	message
				data2	=	0;																																	//	with	a	velocity	of	zero.
		}
		channel--;																																			//	Decrement	the	channel,	because	MIDI	channel	1
																																															//	corresponds	to	binary	channel	0
		uint8_t	statusByte	=	messageType	|	channel;		//	Combine	the	messageType	(high	nibble)
																																															//	with	the	channel	(low	nibble)
																																															//	Both	the	message	type	and	the	channel
																																															//	should	be	4	bits	wide
		statusByte	|=	0b10000000;																				//	Set	the	most	significant	bit	of	the	status	byte
		data1						&=	0b01111111;																				//	Clear	the	most	significant	bit	of	the	data	
bytes
		data2						&=	0b01111111;

		sendMIDIHeader(statusByte);																		//	Send	the	header	over	Serial,	using	running	
status
		Serial.write(data1);																									//	Send	the	data	bytes	over	Serial
		Serial.write(data2);
}

To	ensure	that	the	receiver	will	know	what	to	do	with	the	data,	even	if	it	missed	the	first	header
byte,	it	is	a	good	idea	to	send	a	header	byte	regularly.	This	can	be	done	by	remembering	the
time	the	last	header	was	sent:	

const	unsigned	long	headerResendTime	=	1000;			//	send	a	new	header	every	second

void	sendMIDIHeader(uint8_t	header)	{
		static	unsigned	long	lastHeaderTime	=	millis();
		static	uint8_t	runningHeader	=	0;										
		if	(header	!=	runningHeader																		//	If	the	new	header	is	different	from	the	
previous
				||	(millis()	-	lastHeaderTime)
				>	headerResendTime)	{																						//	Or	if	the	last	header	was	sent	more	than	1	s	
ago
				Serial.write(header);																						//	Send	the	status	byte	over	Serial
				runningHeader	=	header;																				//	Remember	the	new	header
				lastHeaderTime	=	millis();
		}
}

Finished	code

You	can	now	put	these	functions	in	a	separate	file,	so	that	you	can	use	it	in	all	of	your	sketches.
Save	it	as	sendMIDI.h,	you'll	need	it	in	the	following	chapters.



#ifndef	sendMIDI_h_
#define	sendMIDI_h_

const	uint8_t	NOTE_OFF	=	0x80;
const	uint8_t	NOTE_ON	=	0x90;
const	uint8_t	KEY_PRESSURE	=	0xA0;
const	uint8_t	CC	=	0xB0;
const	uint8_t	PROGRAM_CHANGE	=	0xC0;
const	uint8_t	CHANNEL_PRESSURE	=	0xD0;
const	uint8_t	PITCH_BEND	=	0xE0;

const	unsigned	long	headerResendTime	=	1000;			//	send	a	new	header	every	second

void	sendMIDIHeader(uint8_t	header)	{
		static	unsigned	long	lastHeaderTime	=	millis();
		static	uint8_t	runningHeader	=	0;

		if	(header	!=	runningHeader																		//	If	the	new	header	is	different	from	the	previous
				||	(millis()	-	lastHeaderTime)
				>	headerResendTime)	{																						//	Or	if	the	last	header	was	sent	more	than	1	s	ago
				Serial.write(header);																						//	Send	the	status	byte	over	Serial
				runningHeader	=	header;																				//	Remember	the	new	header
				lastHeaderTime	=	millis();
		}
}

void	sendMIDI(uint8_t	messageType,	uint8_t	channel,	uint8_t	data1,	uint8_t	data2)	{
		if	(messageType	==	NOTE_OFF)	{															//	Replace	note	off	messages
				messageType	=	NOTE_ON;																					//	with	a	note	on	message
				data2	=	0;																																	//	with	a	velocity	of	zero.
		}
		channel--;																																			//	Decrement	the	channel,	because	MIDI	channel	1
																																															//	corresponds	to	binary	channel	0
		uint8_t	statusByte	=	messageType	|	channel;		//	Combine	the	messageType	(high	nibble)
																																															//	with	the	channel	(low	nibble)
																																															//	Both	the	message	type	and	the	channel
																																															//	should	be	4	bits	wide
		statusByte	|=	0b10000000;																				//	Set	the	most	significant	bit	of	the	status	byte
		data1						&=	0b01111111;																				//	Clear	the	most	significant	bit	of	the	data	bytes
		data2						&=	0b01111111;

		sendMIDIHeader(statusByte);																		//	Send	the	header	over	Serial,	using	running	
status
		Serial.write(data1);																									//	Send	the	data	bytes	over	Serial
		Serial.write(data2);
}
	void	sendMIDI(uint8_t	messageType,	uint8_t	channel,	uint8_t	data)	{
		channel--;																																			//	Decrement	the	channel,	because	MIDI	channel	1
																																															//	corresponds	to	binary	channel	0
		uint8_t	statusByte	=	messageType	|	channel;		//	Combine	the	messageType	(high	nibble)
																																															//	with	the	channel	(low	nibble)
																																															//	Both	the	message	type	and	the	channel
																																															//	should	be	4	bits	wide
		statusByte	|=	0b10000000;																				//	Set	the	most	significant	bit	of	the	status	byte
		data							&=	0b01111111;																				//	Clear	the	most	significant	bit	of	the	data	byte

		sendMIDIHeader(statusByte);																		//	Send	the	header	over	Serial,	using	running	
status
		Serial.write(data);																										//	Send	the	data	byte	over	Serial
}

#endif



MIDI	Controllers
The	MIDI	protocol	is	often	used	for	MIDI	controllers,	devices	with	physical	knobs	and	buttons	to
control	settings	in	a	Digital	Audio	Workstation	(DAW),	or	to	enter	notes	in	audio	or	music	notation
software.	This	is	often	much	faster	and	more	intuitive	than	using	the	mouse	and	keyboard	for
everything.	MIDI	controllers	are	also	used	during	live	performances,	to	control	effect	modules,
samplers,	synthesizers,	DJ	software,	etc.	
This	chapter	will	cover	how	to	write	the	code	for	a	working	MIDI	controller	using	Arduino.

Buttons
For	sending	the	state	of	a	button,	note	events	are	used.	When	the	button	is	pressed,	a	note	on
event	is	sent,	when	it's	released,	a	note	off	event	is	sent.	

Hardware

Connecting	a	button	to	the	Arduino	is	pretty	straightforward:	Connect	one	lead	of	the	button	to	a
digital	input	pin,	and	connect	the	other	lead	to	ground.

+5V

S1

Internal	pull-up	resistor
R1

Arduino	digital	input

	The	internal	pull-up	resistor*	of	the	input	pin	will
be	used,	so	if	the	button	is	released	(if	it	doesn't	conduct),	the	input	will	be	"pulled	up"	to	5V,
and	it	will	read	a	digital	1.	When	the	button	is	pressed,	it	connects	the	input	pin	directly	to
ground,	so	it	will	read	a	digital	0.	

(*)	The	microcontroller	has	built-in	pull-up	resistors,	to	make	working	with	buttons	and	open-collector	outputs	a	whole
lot	easier.	This	resistor	can	be	enabled	in	software,	using	pinMode(pushButtonPin,	INPUT_PULLUP).	This	means	that	you
don't	have	to	add	a	resistor	externally.

Software

The	MIDI	controller	only	has	to	send	events	when	the	state	of	the	button	changes.	To	do	this,	the
input	will	constantly	be	polled	in	the	loop,	and	then	the	previous	state	is	kept	in	a	static	variable.
When	the	new	input	state	does	not	equal	the	previous	state,	the	state	of	the	button	has
changed,	and	a	MIDI	event	will	be	sent.	
If	the	new	state	is	low,	the	button	has	been	pressed	and	a	note	on	event	is	sent.	If	it's	high,	it	has
been	released,	and	a	note	off	event	is	sent.	

const	uint8_t	pushButtonPin	=	2;

const	uint8_t	channel	=	1;						//	MIDI	channel	1
const	uint8_t	note	=	0x3C;						//	Middle	C	(C4)
const	uint8_t	velocity	=	0x7F;		//	Maximum	velocity

void	setup()	{
		pinMode(pushButtonPin,	INPUT_PULLUP);		//	Enable	the	internal	pull-up	resistor
		Serial.begin(31250);
}

void	loop()	{
		static	bool	previousState	=	HIGH;																//	Declare	a	static	variable	to	save	the	
previous	state



																																																			//	and	initialize	it	to	HIGH	(not	pressed).
		bool	currentState	=	digitalRead(pushButtonPin);		//	Read	the	current	state	of	the	input	pin
		if	(currentState	!=	previousState)	{													//	If	the	current	state	is	different	from	the	
previous	state
				if	(currentState	==	LOW)	{																							//	If	the	button	is	pressed
						sendMIDI(NOTE_ON,	channel,	note,	velocity);						//	Send	a	note	on	event
				}	else	{																																									//	If	the	button	is	released
						sendMIDI(NOTE_OFF,	channel,	note,	velocity);					//	Send	a	note	off	event
				}
				previousState	=	currentState;																				//	Remember	the	current	state	of	the	button
		}
}

Keep	in	mind	that	the	declaration	and	initialization	of	a	static	local	variable	happen	only	once,
the	value	is	retained	the	next	time	the	function	is	executed.

In	principle,	this	approach	should	work,	however,	in	practice,	there	will	be	contact	bounce.	When
you	press	or	release	a	button,	it	actually	changes	state	many	times	really	quickly,	before	settling
to	the	correct	state.	This	is	called	bounce,	and	can	be	a	real	problem	if	you	want	to	reliably
detect	button	presses.	By	including	a	timer	in	the	code,	you	can	make	sure	that	the	button	is
stable	for	at	least	a	couple	of	tens	of	milliseconds	before	registering	the	state	change.	Here's
what	that	looks	like:	

const	unsigned	long	debounceTime	=	25;		//	Ignore	all	state	changes	that	happen	25	milliseconds
																																								//	after	the	button	is	pressed	or	released.
	
void	loop()	{
		static	bool	previousState	=	HIGH;																//	Declare	a	static	variable	to	save	the	
previous	state	of	the	input
																																																			//	and	initialize	it	to	HIGH	(not	pressed).
		static	bool	buttonState			=	HIGH;																//	Declare	a	static	variable	to	save	the	state	
of	the	button
																																																			//	and	initialize	it	to	HIGH	(not	pressed).
		static	unsigned	long	previousBounceTime	=	0;					//	Declare	a	static	variable	to	save	the	time	
the	button	last	
																																																			//	changed	state	(bounced).
		bool	currentState	=	digitalRead(pushButtonPin);		//	Read	the	current	state	of	the	input	pin
		if	(currentState	!=	buttonState)	{																					//	If	the	current	state	is	different	
from	the	button	state
				if	(millis()	-	previousBounceTime	>	debounceTime)	{				//	If	the	input	has	been	stable	for	at	
least	25	ms
						buttonState	=	currentState;																												//	Remember	the	state	that	the	
(debounced)	button	is	in
						if	(buttonState	==	LOW)	{																														//	If	the	button	is	pressed
								sendMIDI(NOTE_ON,	channel,	note,	velocity);												//	Send	a	note	on	event
						}	else	{																																															//	If	the	button	is	released
								sendMIDI(NOTE_OFF,	channel,	note,	velocity);											//	Send	a	note	off	event
						}
				}
		}
		if	(currentState	!=	previousState)	{																			//	If	the	state	of	the	input	changed	(if	
the	button	bounces)
				previousBounceTime	=	millis();																									//	Remember	the	current	time
				previousState	=	currentState;																										//	Remember	the	current	state	of	the	
input
		}
}

buttonState	keeps	the	state	of	the	ideal,	debounced	button,	while	previousState	keeps	the	previous
state	of	the	actual	input.

Potentiometers	and	faders
MIDI	controllers	often	feature	potentiometers	and	faders	for	continuous	controllers	like	volume,
pan,	modulation,	etc.

Hardware

The	variable	resistors	(potentiometers	or	faders)	are	just	used	in	a	voltage	divider	configuration,
with	the	two	outer	pins	connected	to	ground	and	5V,	and	the	center	pin	connected	to	an	analog
input	pin	on	the	Arduino.	Keep	in	mind	that	you	need	a	potentiometer	with	a	linear	taper	(not	a



logarithmic	or	audio	taper).	

R1

+5V

Arduino	analog	input

Control	Change

For	most	continuous	controllers,	control	change	events	are	used.	Most	software	only	supports	7-
bit	controllers.	This	allows	for	a	total	of	1920	controllers	(120	on	each	of	the	16	MIDI	channels).

A	continuous	controller	can	be	implemented	as	follows:	sample	the	analog	input	in	the	loop,
convert	from	the	10-bit	analog	value	to	a	7-bit	Control	Change	value,	if	it's	a	different	value	than
last	time,	send	a	control	change	message	with	the	new	value.	

const	uint8_t	analogPin	=	A0;

const	uint8_t	channel	=	1;								//	MIDI	channel	1
const	uint8_t	controller	=	0x10;		//	General	Purpose	Controller	1

void	setup()	{
		Serial.begin(31250);
}

void	loop()	{
		static	uint8_t	previousValue	=	0b10000000;							//	Declare	a	static	variable	to	save	the	
previous	CC	value
																																																			//	and	initialize	it	to	0b10000000	(the	most	
significant	bit	is	set,	
																																																			//	so	it	is	different	from	any	possible	7-bit	
CC	value).

		uint16_t	analogValue	=	analogRead(analogPin);				//	Read	the	value	of	the	analog	input
		uint8_t	CC_value	=	analogValue	>>	3;													//	Convert	from	a	10-bit	number	to	a	7-bit	
number	by	shifting
																																																			//	it	3	bits	to	the	right.
		
		if	(CC_value	!=	previousValue)	{																	//	If	the	current	value	is	different	from	the	
previous	value
				sendMIDI(CC,	channel,	controller,	CC_value);					//	Send	the	new	value	over	MIDI
				previousValue	=	CC_value;																								//	Remember	the	new	value
		}
}

The	problem	is	that	there	can	be	quite	a	lot	of	noise	on	the	analog	inputs.	So	if	the	value
fluctuates	a	lot,	it	will	constantly	send	new	CC	messages,	even	if	the	knob	is	not	being	touched.
To	prevent	this,	a	running	average	filter	can	be	used	on	the	input.	

const	uint8_t	averageLength	=	8;		//	Average	the	analog	input	over	8	samples	(maximum	=	2^16	/	
2^10	=	2^6	=	64)

void	loop()	{
		static	uint8_t	previousValue	=	0b10000000;					//	Declare	a	static	variable	to	save	the	
previous	CC	value
																																																	//	and	initialize	it	to	0b10000000	(the	most	
significant	bit	is	set,	
																																																	//	so	it	is	different	from	any	possible	7-bit	CC	
value).

		uint16_t	analogValue	=	analogRead(analogPin);		//	Read	the	value	of	the	analog	input
		analogValue	=	runningAverage(analogValue);					//	Average	the	value
		uint8_t	CC_value	=	analogValue	>>	3;											//	Convert	from	a	10-bit	number	to	a	7-bit	
number	by	shifting
																																																	//	it	3	bits	to	the	right.
		
		if	(CC_value	!=	previousValue)	{															//	If	the	current	value	is	different	from	the	
previous	value
				sendMIDI(CC,	channel,	controller,	CC_value);			//	Send	the	new	value	over	MIDI
				previousValue	=	CC_value;																						//	Remember	the	new	value
		}
}

uint16_t	runningAverage(uint16_t	value)	{		//	https://playground.arduino.cc/Main/RunningAverage



		static	uint16_t	previousValues[averageLength];
		static	uint8_t	index	=	0;
		static	uint16_t	sum	=	0;
		static	uint8_t	filled	=	0;

		sum	-=	previousValues[index];
		previousValues[index]	=	value;
		sum	+=	value;
		index++;
		index	=	index	%	averageLength;
		if	(filled	<	averageLength)
				filled++;
				
		return	sum	/	filled;
}

Pitch	Bend

If	a	higher	resolution	is	required,	for	example	for	volume	faders,	pitch	bend	events	are	used.	This
means	that	they	have	a	14-bit	accuracy,	however,	most	devices	only	use	the	10	most	significant
bits.	There	can	be	only	one	pitch	bend	controller	on	each	of	the	16	MIDI	channels.

The	code	is	pretty	similar	to	the	previous	example.	Just	shift	the	value	4	bits	to	the	left	instead	of
3	bits	to	the	right,	and	send	a	pitch	bend	message	instead	of	a	control	change	message.	Also
note	that	some	of	the	variables	are	now	of	larger	data	types,	to	accommodate	the	14-bit	pitch
bend	values.	
To	send	the	14-bit	pitch	bend	value,	it	has	to	be	split	up	into	two	7-bit	data	bytes.	This	can	be
acchieved	by	shifting	it	7	bits	to	the	right,	to	get	the	7	most	significant	bits.	The	sendMIDI	function
takes	care	of	the	bit	masking	of	the	7	least	significant	bits.	

const	uint8_t	analogPin	=	A0;

const	uint8_t	channel	=	1;								//	MIDI	channel	1

void	setup()	{
		Serial.begin(31250);
}

const	uint8_t	averageLength	=	16;		//	Average	the	analog	input	over	16	samples	(maximum	=	2^16	/	
2^10	=	2^6	=	64)

void	loop()	{
		static	uint16_t	previousValue	=	0x8000;								//	Declare	a	static	variable	to	save	the	
previous	value
																																																	//	and	initialize	it	to	0x8000	(the	most	
significant	bit	is	set,	
																																																	//	so	it	is	different	from	any	possible	14-bit	
pitch	bend	value).

		uint16_t	analogValue	=	analogRead(analogPin);		//	Read	the	value	of	the	analog	input
		analogValue	=	runningAverage(analogValue);					//	Average	the	value
		uint16_t	value	=	analogValue	<<	4;													//	Convert	from	a	10-bit	number	to	a	14-bit	
number	by	shifting
																																																	//	it	4	bits	to	the	left	(adds	4	padding	zeros	
to	the	right).
		
		if	(value	!=	previousValue)	{																								//	If	the	current	value	is	different	from	
the	previous	value
				sendMIDI(PITCH_BEND,	channel,	value,	value	>>	7);				//	Send	the	new	value	over	MIDI	(split	
up	into	two	7-bit	bytes)
				previousValue	=	value;																															//	Remember	the	new	value
		}
}

uint16_t	runningAverage(uint16_t	value)	{		//	https://playground.arduino.cc/Main/RunningAverage
		static	uint16_t	previousValues[averageLength];
		static	uint8_t	index	=	0;
		static	uint16_t	sum	=	0;
		static	uint8_t	filled	=	0;

		sum	-=	previousValues[index];
		previousValues[index]	=	value;
		sum	+=	value;
		index++;
		index	=	index	%	averageLength;
		if	(filled	<	averageLength)
				filled++;
				
		return	sum	/	filled;
}



Rotary	encoders

The	disadvantage	of	potentiometers	is	that	the	computer	can't	change	their	position.	For
example,	if	you	have	a	potentiometer	mapped	to	a	plugin	parameter,	and	you	select	a	different
plugin,	the	potentiometer	doesn't	automatically	move	to	the	position	of	the	new	pluggin
parameter's	value.	Even	worse,	if	you	accidentally	touch	the	potentiometer,	it	will	overwrite	the
parameter	with	the	position	of	potentiometer,	regardless	of	the	value	it	had	before.

One	solution	is	to	use	rotary	encoders.	This	is	a	relative	or	incremental	type	of	rotary	knob,	which
means	that	it	doesn't	have	an	absolute	position,	it	only	sends	incremental	position	changes	when
moved.	When	the	encoder	is	turned	two	ticks	to	the	right,	it	sends	a	value	of	+2,	when	it's
turned	5	ticks	to	the	left,	it	sends	a	value	of	-5.

Hardware

Connect	the	common	pin	of	the	rotary	encoder	to	ground,	and	connect	the	A	and	B	pins	to	digital
input	pins	(preferably	interrupt	capable	pins)	of	the	Arduino.	As	a	hardware	debouncing	measure,
you	could	add	an	RC	low-pass	filter.

Software

The	easiest	way	to	read	a	rotary	encoder	is	to	use	a	library.	This	ensures	compatibility	on	pretty
much	all	boards,	and	many	of	these	libraries	are	much	more	efficient	than	writing	the	ISR	code
yourself.	My	personal	favorite	is	the	PJRC	Encoder	library.

#include	<Encoder.h>		//	Include	the	PJRC	Encoder	library

const	uint8_t	channel	=	1;								//	MIDI	channel	1
const	uint8_t	controller	=	0x10;		//	General	Purpose	Controller	1

Encoder	encoder	(2,	3);		//	A	rotary	encoder	connected	to	pins	2	and	3

void	setup()	{
		Serial.begin(31250);
}

void	loop()	{
		static	int32_t	previousPosition	=	0;															//	A	static	variable	for	saving	the	previous	
encoder	position
		int32_t	position	=	encoder.read();																	//	Read	the	current	encoder	position
		int32_t	difference	=	position	-	previousPosition;		//	Calculate	the	relative	movement
		if	(difference	!=	0)	{																													//	If	the	encoder	was	moved
				sendMIDI(CC,	channel,	controller,	difference);			//	Send	the	relative	position	change	over	
MIDI
				previousPosition	=	position;																					//	Remember	the	current	position	as	the	
previous	position
		}
}

Most	rotary	encoders	send	4	pulses	for	every	physical	'tick'	(indent).	It	makes	sense	to	divide	the
number	of	pulses	by	4	before	sending	it	over	MIDI.	Keep	in	mind	that	is	a	floor	division,	so	we
can't	just	replace	previousPosition	with	position,	because	we'd	lose	pulses.	For	example,	if	the
current	position	is	6,	and	the	previous	position	is	0,	difference	will	be	6	pulses.	6	/	4	=	1	complete
tick.	Then	the	previous	position	will	be	set	to	6.	However,	only	1	tick,	i.e.	4	pulses,	has	been	sent,
and	6	%	4	=	2	pulses	have	just	been	lost.	
The	solution	is	very	simple:	

void	loop()	{
		static	int32_t	previousPosition	=	0;														//	A	static	variable	for	saving	the	previous	
encoder	position
		int32_t	position	=	encoder.read();																//	Read	the	current	encoder	position
		int32_t	difference	=	position	-	previousPosition;	//	Calculate	the	relative	movement
		difference	/=	4;																																		//	One	tick	for	every	4	pulses
		if	(difference	!=	0)	{																												//	If	the	encoder	was	moved
				sendMIDI(CC,	channel,	controller,	difference);		//	Send	the	relative	position	change	over	
MIDI
				previousPosition	+=	difference	*	4;													//	Add	the	pulses	sent	over	MIDI	to	the	
previous	position
		}
}

There	are	three	ways	to	encode	negative	position	changes	into	a	7-bit	MIDI	data	byte:

1.	 Two's	complement



2.	 Signed	magnitude
3.	 Offset	binary

On	the	Arduino,	all	signed	numbers	are	represented	as	two's	complement.	So	sending	a	two's
complement	number	over	MIDI	is	as	simple	as	just	sending	(the	7	least	significant	bits	of)	the
signed	variable.	
In	signed	magnitude	representation,	bit	6	is	used	as	a	sign	bit	(0	=	positive,	1	=	negative),	and
the	6	least	significant	bits	are	used	to	store	the	absolute	value	of	the	signed	number.	
When	using	binary	offset	representation,	64	is	added	to	the	signed	number	to	make	everything
positive.	

Some	programs	don't	support	relative	changes	of	more	than	15	in	one	MIDI	message,	so	we
constrain	the	difference	to	15.	

This	sketch	allows	you	to	choose	what	representation	to	use,	to	guarantee	compatibility	with
most	software,	and	also	limits	the	relative	position	change	per	MIDI	message	to	15.	

#include	<Encoder.h>		//	Include	the	PJRC	Encoder	library

enum	relativeCCmode	{
		TWOS_COMPLEMENT,
		BINARY_OFFSET,
		SIGN_MAGNITUDE
};

const	uint8_t	channel	=	1;								//	MIDI	channel	1
const	uint8_t	controller	=	0x10;		//	General	Purpose	Controller	1

const	Encoder	encoder	(2,	3);		//	A	rotary	encoder	connected	to	pins	2	and	3

const	relativeCCmode	negativeRepresentation	=	SIGN_MAGNITUDE;		//	Select	the	way	negative	numbers	
are	represented

void	setup()	{
		Serial.begin(31250);
}

void	loop()	{
		static	int32_t	previousPosition	=	0;														//	A	static	variable	for	saving	the	previous	
encoder	position
		int32_t	position	=	encoder.read();																//	Read	the	current	encoder	position
		int32_t	difference	=	position	-	previousPosition;	//	Calculate	the	relative	movement
		difference	/=	4;																																		//	One	tick	for	every	4	pulses
		difference	=	constrain(difference,	-15,	15);						//	Make	sure	that	only	15	ticks	are	sent	at	
once
		if	(difference	!=	0)	{																												//	If	the	encoder	was	moved
				uint8_t	CC_value	=	mapRelativeCC(difference);			//	Change	the	representation	of	negative	
numbers
				sendMIDI(CC,	channel,	controller,	CC_value);				//	Send	the	relative	position	change	over	
MIDI
				previousPosition	+=	difference	*	4;													//	Add	the	pulses	sent	over	MIDI	to	the	
previous	position
		}
}

uint8_t	twosComplementTo7bitSignedMagnitude(int8_t	value)	{		//	Convert	an	8-bit	two's	complement	
integer	to	7-bit	sign-magnitude	format
		uint8_t	mask	=	value	>>	7;
		uint8_t	abs	=	(value	+	mask)	^	mask;
		uint8_t	sign	=	mask	&	0b01000000;
		return	(abs	&	0b00111111)	|	sign;
}

uint8_t	mapRelativeCC(int8_t	value)	{		//	Convert	an	8-bit	two's	complement	integer	to	a	7-bit	
value	to	send	over	MIDI
		switch	(negativeRepresentation)	{
				case	TWOS_COMPLEMENT:
						return	value;		//	Remember	that	the	sendMIDI	function	does	the	bit	masking,	so	you	don't	
have	to	worry	about	bit	7	being	1.
				case	BINARY_OFFSET:
						return	value	+	64;
				case	SIGN_MAGNITUDE:
						return	twosComplementTo7bitSignedMagnitude(value);
		}
}

Object-Oriented	approach
The	examples	above	only	work	for	a	single	button,	potentiometer	or	encoder.	Just	copying	and



pasting	the	code	for	each	new	component	would	lead	to	many	repetitions	and	very	messy	code.
That's	why	it's	a	good	idea	to	implement	the	code	in	different	classes:	a	class	for	buttons,
another	class	for	potentiometers,	etc.	You	can	then	just	instantiate	many	objects	of	these	classes
for	the	many	buttons	and	knobs	on	your	MIDI	controller.	

I	wrote	an	Arduino	MIDI	controller	library	that	makes	this	really	easy.	For	example,	this	is	all	the
code	you	need	for	a	MIDI	controller	with	4	potentiometers,	4	buttons	and	2	rotary	encoders:	

#include	<MIDI_Controller.h>		//	Include	the	library

/*	Create	four	new	instances	of	the	class	'Analog'	on	pins	A0,	A1,	A2	and	A3,	
			with	controller	number	0x07	(channel	volume),	on	MIDI	channels	1	through	4.	*/
Analog	potentiometers[]	=	{
		{A0,	0x7,	1},
		{A1,	0x7,	2},
		{A2,	0x7,	3},
		{A3,	0x7,	4},
};
/*	Create	four	new	instances	of	the	class	'Digital'	on	pins	4,	5,	6	and	7,	
			with	note	numbers	0x10	through	0x13	(mute),	on	MIDI	channel	1.	*/
Digital	buttons[]	=	{
		{4,	0x10,	1},
		{5,	0x11,	1},
		{6,	0x12,	1},
		{7,	0x13,	1},
};
/*	Create	two	new	instances	of	the	class	'RotaryEncoder'	called	'encoders',	on	pins	0	&	1,	and	2	
&	3,	
			controller	numbers	0x2F	and	0x30,	on	MIDI	channel	1,	at	normal	speed,	using	normal	encoders
			(4	pulses	per	click/step),	using	two's	complement	sign	representation.	*/
RotaryEncoder	encoders[]	=	{
		{0,	1,	0x2F,	1,	1,	NORMAL_ENCODER,	TWOS_COMPLEMENT},
		{2,	3,	0x30,	1,	1,	NORMAL_ENCODER,	TWOS_COMPLEMENT}
};

void	setup()	{}

void	loop()	{		//	Refresh	all	inputs
		MIDI_Controller.refresh();
}

As	you	can	see,	there's	only	the	definitions	of	all	controls,	then	an	empty	setup,	and	finally	just	a
loop	that	refreshes	all	controls	indefinitely.	The	MIDI	Controller	library	handles	everything
discussed	above,	and	even	more!	
It	allows	you	to	arrange	controls	into	different	banks,	switch	between	banks,	choose	between
many	different	MIDI	interfaces	(USB,	Serial,	SoftwareSerial),	has	support	for	multiplexers,	button
matrices,	etc.	

You	can	download	the	library	here	.



MIDI	Input
Reading	MIDI	can	be	done	using	the	Arduino's	UART.	The	MIDI	specification	proposes	an
algorithm	for	receiving	MIDI	messages:

?

?

Store	in	
Running	Status	

Buffer

Clear	Third	
Byte	Flag

?

Store	it	in	FIFO

Increment	
Pointer	+	1

(do	not	
increment	
pointer	here)

?

?

?

?

Ignore	
Data	Byte

Clear	Third	
Byte	Flag

Store	Third	
Byte	into	FIFO

Increment	
Pointer	+	3

?

Clear	Running	
Status	Buffer

?

?
Set	Third	
Byte	Flag

Store	Status	
into	FIFO

Store	Data	Byte	
into	FIFO

(do	not	
increment	
pointer	here)Ignore	Status

Increment	
Pointer	+	2

Store	Data	Byte	
into	FIFO

Store	Status	
into	FIFO

Read	Serial	Input	
Bit	7	=	0	Bit	7	=	1	

Third	Byte	Flag	=	1	Yes	 Is	it	a	
Real-Time	
Message?

No

No

Yes	

Is	this	a	
Tune	Request?	

=	F6H	

Flag	=	0
Running	Status	
Buffer	=	0

Buffer	
Greater	
than	0 Less	

than	
C0H	

Less	than	E0H	

Buffer	Less	
than	F0H

Buffer	
Greater	
than	F0H

Buffer	=	F2H

Buffer	=	F3H	
or	F1H

Buffer	>=	F0H

Clear	Running	
Status	Buffer

Clear	Running	
Status	Buffer

In	this	chapter,	we	won't	be	concerned	with	System	or	Real-Time	messages.	The	implementation
of	the	algorithm	above	is	pretty	straightforward.	We	won't	use	a	FIFO,	but	handle	the	messages
immediately.	

void	setup()	{
		Serial.begin(31250);
}



void	handleMIDI(uint8_t	statusByte,	uint8_t	data1,	uint8_t	data2	=	0)	{
		;
}

void	loop()	{
		static	uint8_t	runningStatus	=	0;
		static	uint8_t	data1	=	0;
		static	bool	thirdByte	=	false;

		if	(Serial.available())	{
				uint8_t	newByte	=	Serial.read();
				if	(newByte	&	0b10000000)	{																			//	Header	byte	received
						runningStatus	=	newByte;
						thirdByte	=	false;
				}	else	{
						if	(thirdByte)	{																												//	Second	data	byte	received
								uint8_t	data2	=	newByte;
								handleMIDI(runningStatus,	data1,	data2);
								thirdByte	=	false;
								return;
						}	else	{																																				//	First	data	byte	received
								if	(!runningStatus)	//	no	status	byte
										return;	//	invalid	data	byte
								if	(runningStatus	<	0xC0)	{															//	First	data	byte	of	Note	Off/On,	Key	Pressure	
or	Control	Change
										data1	=	newByte;
										thirdByte	=	true;
										return;
								}
								if	(runningStatus	<	0xE0)	{															//	First	data	byte	of	Program	Change	or	Channel	
Pressure
										data1	=	newByte;
										handleMIDI(runningStatus,	data1);
										return;
								}
								if	(runningStatus	<	0xF0)	{															//	First	data	byte	of	Pitch	Bend
										data1	=	newByte;
										thirdByte	=	true;
										return;
								}	else	{
										;																																							//	System	message	(not	implemented)
								}
						}
				}
		}
}

There	are	a	few	optimizations	we	can	do.	We	can	just	check	if	the	running	status	byte	contains	a
message	type	for	a	two-	or	three-byte	message,	instead	of	the	comparisons	we	have	right	now.
Apart	from	that,	we	don't	really	need	an	extra	variable	for	the	third	byte	flag,	we	can	just	use	bit
7	of	the	data1	variable.	

const	uint8_t	NOTE_OFF	=	0x80;
const	uint8_t	NOTE_ON	=	0x90;
const	uint8_t	KEY_PRESSURE	=	0xA0;
const	uint8_t	CC	=	0xB0;
const	uint8_t	PROGRAM_CHANGE	=	0xC0;
const	uint8_t	CHANNEL_PRESSURE	=	0xD0;
const	uint8_t	PITCH_BEND	=	0xE0;

void	loop()	{
		static	uint8_t	runningStatus	=	0;
		static	uint8_t	data1	=	0b10000000;

		if	(Serial.available())	{
				uint8_t	newByte	=	Serial.read();
				if	(newByte	&	0b10000000)	{																					//	Status	byte	received
						runningStatus	=	newByte;
						data1	=	0b10000000;
				}	else	{
						if	(data1	!=	0b10000000)	{																				//	Second	data	byte	received
								handleMIDI(runningStatus,	data1,	newByte);
								data1	=	0b10000000;
								return;
						}	else	{																																						//	First	data	byte	received
								if	(!runningStatus)	//	no	status	byte
										return;	//	invalid	data	byte
								if	(runningStatus	==	PROGRAM_CHANGE
												||	runningStatus	==	CHANNEL_PRESSURE)	{	//	First	data	byte	of	Program	Change	or	
Channel	Pressure
										handleMIDI(runningStatus,	newByte);
										return;
								}	else	if	(runningStatus	<	0xF0)	{										//	First	data	byte	of	Note	Off/On,	Key	



Pressure,	Control	Change	or	Pitch	Bend
										data1	=	newByte;
										return;
								}	else	{
										;																																									//	System	message	(not	implemented)
								}
						}
				}
		}
}


