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Pieter P

An analog VU meter is a moving-coil galvanometer. The figure below shows a schematic representation:

The needle moves on a pivot and is kept in place using a spiral-shaped torsion spring. A rectangular coil is fixed to the needle. The
coil moves in an air gap between the fixed permanent magnet and a cylindrical iron core. This configuration results in a strong,
close to radial magnetic field in the air gap.

When current flows through the coil, the force on one half of the coil is given by Lorentz's Force Law:

where  is the number of windings,  is the current,  is a vector that points along the vertical part of the wires of the coil, in the

direction of the current and with the same length as the height of the coil, and  is the magnetic field vector.
In the figure above,  is shown using black arrows, the vector  is shown in red. The one on the left points out of the page, and
the one on the right points into the page. The resulting force vectors are shown in green. You can verify their direction using the
right-hand rule (middle finger is the magnetic field vector , index finger is the current vector , thumb is the force vector ).

Model of a moving-coil galvanometer

Construction

Schematic representation of a moving-coil instrument.

Law's of motion

Force on the coil

External current

→FL = Ni→l × →B,

N i →l
→B

→B Ni→l

→B Ni→l →FL

https://tttapa.github.io/Pages/Arduino/Audio-and-Signal-Processing/VU-Meters/images/moving-coil-instrument.svg
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The magnitude of the Lorentz force is then

where  is the angle between the magnetic field vector and the direction of the current. The angle is always , so this simplifies
to

The horizontal part of the coil (parallel to the page) experiences no net force, since the current at the bottom and at the top of the
coil flows in opposite directions and the magnetic field is symmetric.

The coil is wound around a rectangular piece of metal. When the needle moves, the armature (coil and the rectangular piece of
metal) rotates in the magnetic field. This rotation causes the magnetic flux through the armature to change, which according to
Faraday's Law of Induction induces a current in the metal, resulting in a magnetic field that opposes the rotation (this is Lenz's
Law). These induced currents are called Eddy currents or Foucault's currents. The same principle is used for induction brakes in
high-speed trains, for example.

The magnitude of this opposing force is proportional to the rate of change of the magnetic flux in the armature, . In a first

order approximation, this is simply proportional to the angular velocity of the armature, , therefore

where  is a proportionality constant that takes into account the area of the armature, the resistance of the metal it's made of, the
strength of the magnetic field, etc.

Recall the formula for torque:

where  is the torque, and  is the radius vector from the center of rotation to the point of application of the force . Using scalar
quantities, the formula becomes:

where  is the angle between  and .

Because of the radial magnetic field in the air-gap, the angle  is always , so the torque on the coil caused by the current is

where  is the radius of the coil. The factor  accounts for the two halves of the coil (there are two green force vectors that have to
be summed together). Since the number of windings, the dimensions of the coil, and the strength of the magnet are all constant, we
introduce a constant .

The damping force  caused by induction in the armature causes an opposing torque, proportional to the velocity of the needle:

Again, a constant  is introduced to make future calculations easier.

When the needle moves away from its center position, there is a third torque, caused by the torsion spring. This torque can be
approximated using Hooke's law:

where  is the torsion coefficient (spring constant), and  is the angle of the needle.

FL = ∥ →FL∥ = NilB sin(φ),

φ 90°

FL = NilB.

Eddy currents

∂ΦB

∂t

θ̇ =
dθ

dt

Fd = −μ θ̇,

μ

Torque on the coil

→τ = →r × →F ,

→τ →r →F

τ = ∥→r∥∥ →F∥ sin(ψ),

ψ →r →F

ψ 90°

τL = 2rFL = 2rNilB = fi,

r 2

f ≜ 2rNlB

Fd

τd = −rμ θ̇ = −cθ̇.

c ≜ rμ

τH = −kθ,

k θ

https://en.wikipedia.org/wiki/Eddy_current_brake
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Newton's Second Law ( ) has a rotational equivalent that relates the net torque to the angular acceleration of an object:

where  is the net torque,  is the moment of inertia, and  is the angular acceleration.

Applying this law to the three torques derived above:

Both the angle  and the current  vary over time. This results in the differential equation

Recall that , ,  and  are physical constants,  is the angle of the needle, and  is the current applied to the coil. Overdots
indicate derivatives with respect to time.

Rotational version of Newton's Second Law

F = ma

τ = Iα,

τ I α = θ̈ =
d2θ

dt2

τL + τd + τH = Iα

⇔ fi − cθ̇ − kθ = Iθ̈

⇔ Iθ̈ + cθ̇ + kθ = fi.

θ i

Iθ̈(t) + dθ̇(t) + kθ(t) = fi(t). (1)

I c k f θ(t) i(t)


