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A signal is a discrete function that maps an integer (the time step or point in time) to a real value or a vector of real values.

In the simplest case,  will just map to a scalar , but in general, it can also map to an -dimensional vector . This will be
useful later, when we'll introduce systems with multiple inputs and outputs, or systems with multiple internal states.

A signal that is zero for all  is called a unilateral or one-sided signal.

Discrete-Time Linear Time-Invariant Systems, or DTLTI systems for short, are systems that perform a linear transformation on
signals. Time-invariance means that the transformation doesn't change over time, it is independent of the time step , so it doesn't
matter if you apply it to a certain signal now or in ten minutes, the resulting output signals will be the same.

A DTLTI system maps one signal to another:

We'll define the properties of DTLTI systems mathematically:

 is the transformation performed by a Discrete-Time Linear Time-Invariant (DTLTI) system if and only if

1. The transformation is linear:

2. The transformation is time-invariant:

If , then 

As an example of a system that is not linear, consider the system . It is not linear, because
.

Nonlinear systems are many times more complicated than linear systems, so they will not be covered in this series of articles.

The system  is not time-invariant, because the mapping explicitly depends on the time step .
All systems in the following discussions will be time-invariant.

We'll define and plot a simple example signal, and then we'll apply a simple transformation to it. The input signal  is just a
signal that oscillates between 3 and 1:

DTLTI Systems

Signals

x : Z → R : n ↦ x[n]

→x : Z → Rm : n ↦ →x[n]
(1)

x (R) m (Rm)

n < 0

Discrete-Time Linear Time-Invariant Systems

n

T : (Z → Rm) → (Z → Rm) : →x[n] ↦ →y[n] ≜ T (→x[n])

T

T (a ⋅ h[n] + b ⋅ g[n]) = a ⋅ T (h[n]) + b ⋅ T (g[n])

y[n] ≜ T (h[n]) ∀k ∈ N : T (h[n − k]) = y[n − k]

Nonlinear systems

T : x[n] ↦ √x[n]

T (2 ⋅ 2) = √4 = 2 ≠ 2 ⋅ T (2) = 2√2

Time-varying systems

T : x[n] ↦ n ⋅ x[n] n

Example

Mathematical description

x[n]

x : Z → R : n ↦ cos (πn) + 2
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The transformation maps each point of the signal to the average of the current value and the previous value:

The output signal  is defined as:

The input signal  and the output signal of the system  are plotted in the figure below.

The system could be implemented as follows.

The arrows indicate the direction of the data flow. The rectangular  block is called a delay or memory element, and it just delays
the incoming signal by one time step. Sometimes, the Greek capital delta ( ) is used instead, or in some contexts, it is indicated
using , for reasons that will become apparent in the page on the Z-transform. The circle with the  is a summator, it just adds all
incoming signals together. Finally, the triangle containing a number is a scalar, and it just multiplies the signal with a constant factor.

T : (Z → R) → (Z → R) : x[n] ↦
x[n] + x[n − 1]

2

y[n]

y[n] ≜ T (x[n])

x[n] y[n]

Image source code

Block diagram

Image source code
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https://tttapa.github.io/Pages/Mathematics/Systems-and-Control-Theory/Digital-filters/DTLTI-Systems,-Transfer-Functions,-and-the-Z-transform/images/example-dtlti.svg
https://tttapa.github.io/Pages/Mathematics/Systems-and-Control-Theory/Digital-filters/DTLTI-Systems,-Transfer-Functions,-and-the-Z-transform/resources/example-dtlti.py
https://tttapa.github.io/Pages/Mathematics/Systems-and-Control-Theory/Digital-filters/DTLTI-Systems,-Transfer-Functions,-and-the-Z-transform/images/example-dtlti-system.svg
https://tttapa.github.io/Pages/Mathematics/Systems-and-Control-Theory/Digital-filters/DTLTI-Systems,-Transfer-Functions,-and-the-Z-transform/images/example-dtlti-system.tex
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A possible implementation of this system in Python is given in the code snippet below.
We just have to save the input to the delay element on each time step, because we need it to calculate the next output.

It is a good exercise to try to understand how these three representations of the same system are related (the mathematical definition
of , the block diagram, and the Python implementation).

Python implementation

1 from numpy import array, arange, cos, pi
2
3 class ExampleDTLTISystem:
4     def __init__(self, initial_state: float = 0.0):
5         self.state = initial_state
6
7     def __call__(self, x_n: float) -> float:
8         # y[n] = (x[n] + x[n-1]) / 2
9         y_n = (x_n + self.state) / 2.0
10         # x[n] will be x[n-1] on the next time step, 
11         # so save it in the system's state
12         self.state = x_n
13         return y_n
14
15 n = arange(9)                # Create the time variable [0,1,2,…,7,8]
16 x = cos(pi * n) + 2          # Generate the input signal x[n]
17
18 T = ExampleDTLTISystem(1.0)  # Instantiate the system with x[-1] = 1
19 y = map(T, x)                # Apply the transformation y[n] = T(x[n])

T


