Discretization of a Fourth-Order Butterworth
Filter

Pieter P

This is an example on how to design a filter in the analog domain, and then use the bilinear transform to transform it to the digital
domain, while preserving the cut-off frequency.

We'll be using formulas derived on the Bilinear Transform and Butterworth Filters pages.

Design criteria

In this example, we'll design a digital fourth order Butterworth low-pass filter, with a sample frequency of 360 Hz and a cut-off
frequency of 45 Hz.

Frequency Pre-Warping

As discussed in the page on the Bilinear Transform, we have to apply pre-warping to the cut-off frequency before designing a filter.
If we don't the cut-off frequency will shift to an incorrect frequency when we discretize the filter.

First, let's calculate the normalized digital frequency we 4, using the cut-off frequency fe and the sample frequency f:

f.=45Hz
fs = 360 Hz
T — 1
S fs
we = 27fe
~ 282.7rad s!
We
Wed = E
m rad rad
= ——— ~0.7854—
4 sample sample

The Nyquist-Shannon sampling theorem tells us that we can never sample frequencies higher than f,/2 without losing information.
This also means that the cut-off frequency can never be higher than half of the sample frequency. Or in other words, all normalized
frequencies will be in the interval [0, 7r].

Next, we'll use the pre-warping formula we derived in the page on the Bilinear Transform, in order to calculate the analog design
frequency w, ,:

2 Wed
Weag = —tan(: >
’ T, 2

= 720 tan (%) ~ 298.2 rad s !

Note that this frequency is relatively close to w,, but it is not the same. The higher the cut-off frequency (relative to the sample
frequency), the larger the error between w, and w 4.

Designing the Butterworth filter in the Analog Domain

Now that we know the pre-warped analog cut-off frequency, we can start designing the analog filter.
We'll use the formula for the Butterworth low-pass filter derived in the page on Butterworth Filters:

1 s
A
where s’ £

https://tttapa.github.io/Pages/Mathematics/Systems-and-Control-Theory/Digital-filters/Discretization/Bilinear-transform.html
https://tttapa.github.io/Pages/Mathematics/Systems-and-Control-Theory/Analog-Filters/Butterworth-Filters.html

Defining these constants will make the calculations much easier:

a = —2cos (%) o)

—1V2 -
BE —2cos (7—8“) -

=V2+V2

By(s') = (8" +as' +1) (s + Bs' +1)
=s"+5%(a+pB) +5%(af+2)+s'(a+pB)+1

S

Discretizing the Analog Filter

z—1

We can now just apply the Bilinear Transform to the analog transfer function, by substituting § = Tl ~71 - Therefore:
o 2fs z—1
Wae 2+ 1

Again, we'll introduce a constant to simplify the expression:

v 2 2/ = 21 = cot (wﬁ)
Wa,c 2fs tan (w;d) fs (5)
= cot (%) =1+ \/5
, oz —1
S =717 (6)

What follows is just rearranging the expression of By(s’) from Equation 4, using the substitution of Equation 777.
Finally, we end up with an expression for the transfer function, using Equation 1, and we can determine the coefficients using the

constants defined in Equations 2, 3 & 5.

B4(3,)

By(z)

(>

s+ 5% a+B)+s*(aB+2)+s(a+p)+1

4(z—l)4
Tt 1)
s (z—1)3(z+1)
+ W(a+ﬂ)
5 (2 — 1)2(z+1)?
Yo @82
(= 1)+ 1)°
BT
(z+1)*
(z+1)4
vz -1)t
. e e+ Dla+

™

+

=
o+

74
,},3
,.Y2
5

~

+

=
T+ o+ o+ +

~

l

=
+ o+ o+ +

72z -
Yz = 1)(z+1)*(a +B)

1)2(z+ 1)} (aB +2)

(z+1)%
— 422 4+ 622

— 273

+ 278
+ 422 4+

SRR S SR \ R S S\
N N N
|
[\

N
o

622

(z+1)*

+ 1+

+

+ 4+ + +

by + blz_l + b22_2 + b32_3 + b4Z_4

ay+ a1zl +ayz 2 +asz3 +agz?

(v +7¥a+ B+ (@B +2) +ala+B)+1) 2
(—4v* = 2% (a+) + 2v(a+ B) + 4)
(67* — 2v%(aB +2) + 6)

(—47* +2v%(a +) — 2v(a + B) +4)
(v =@+ B) +7*(ef+2) —y(a+B) +1)

3

z

z

z

2

1
1
1
1
1

(' + 7@+ B) + 7% (@B +2) +y(a+B) +1)
(—4’74 —273(a+ B) + 2y(a + B) + 4)

(67* — 2v%*(aB +2) + 6)
(=4t + 273 (a+ B) — 29(a + B) + 4)

(' =7 (a+B) +7*(aB+2) —v(a+B) +1)

~— N N N ~—

z
23

22

z

4

(a+8)
(aB +2)
(a+B)

by =1

by = 4

by = 6

by = 4

by =1

ag = Y+ y(a+pB)+7yHaB+2) +y(a+p)+1 ~97.95
a1 = -4y —2y3(a+B)+2y(a+p)+4 =~ —-192.8

ay = 6v* —27%(aBf+2)+6 ~170.0

a3 = —4y'+293(a+B) —2y(a+p)+4 =~ —70.96

ar = 7' =7 (a+ B +7(af+2) —va+p+1 ~1L79

Frequency Response & Pole-Zero Map
We can check the filter's frequency response to make sure that we didn't make any mistakes. As mentioned in other pages, the
frequency response of a digital system can be a obtained by evaluating the transfer function H () along the unit circle (z = el).
We'll plot the magnitude in decibels.

A(w) = 201log,, ‘H (ej“’) ‘

We can also plot the phase angle of the response:

p(w) = ZH (&™)

Bode Diagram
T T T T T T T T

Magnitude (dB)

360

270

180

Phase (deg)

90

0 | | | | | | |

0 20 40 60 80 100 120 140 160 180
Frequency (Hz)

@ J oUW N

Pole-Zero Map
1 T T DR R T

0.6 ; R
0.2 r x a

02

Imaginary Axis

| e e |
-0.5 0 0.5 1
Real Axis

-1 L
-1.5 -1

You can see that the corner frequency lies around 45 Hz. We can check this mathematically:
A(weq) = —3.01dB
MATLAB & GNU Octave

If you have to design many different filters, you don't want to calculate them all by hand. Luckily, MATLAB and GNU Octave come
with a command to calculate the coefficients of Butterworth filters.

f s = 360; % Sample frequency in Hz

f c = 45; % Cut-off frequency in Hz

order = 4; % Order of the butterworth filter

omega_c = 2 * pi * f c; % Cut-off angular frequency

omega c_d = omega c / f_s; % Normalized cut-off frequency (digital)

[b, a] = butter(order, omega_c_d / pi); % Design the Butterworth filter
disp('a = "); disp(a); % Print the coefficients
disp('b = '); disp(b);

H=tf(b, a, 1 / f_s); % Create a transfer function
bode (H) ; % Show the Bode plot

Note that MATLAB expects the normalized frequency as a number from 0 to 1, so we have to divide by 7 before passing it to the

butter function.

Python

A similar function is available in the SciPy signal package: butter.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html

@ J oUW N

from scipy.signal import butter, freqz, fregs

import matplotlib.pyplot as plt

from math import pi

import numpy as np

f s = 360 # Sample frequency in Hz

f_c = 45 # Cut-off frequency in Hz

order = 4 # Order of the butterworth filter

omega_c = 2 * pi * f c # Cut-off angular frequency

omega_c_d = omega_c / f_s

Design the digital Butterworth filter

b, a = butter(order, omega_c_d / pi)
print ('Coefficients')

print ("b =", b)

print("a =", a)

w, H = freqz(b, a, 4096)
w *= f s / (2 * pi)

Plot the amplitude response
plt.subplot(2, 1, 1)
plt.suptitle('Bode Plot')
H_dB = 20 * np.loglO (abs (H)
plt.plot(w, H_dB)

plt.ylabel ('Magnitude [dB]"'")
plt.xlim(0, f_ s / 2)
plt.ylim(-80, 6)
plt.axvline(f_c, color='red')

Normalized cut-off frequency (digital)

Print the coefficients

Calculate the frequency response
Convert from rad/sample to Hz

Convert modulus of H to dB

plt.axhline (-3, linewidth=0.8, color='black', linestyle=':")

Plot the phase response
plt.subplot(2, 1, 2)

phi = np.angle (H)

phi = np.unwrap (phi)

phi *= 180 / pi

plt.plot(w, phi)

plt.xlabel ('Frequency [Hz]")
plt.ylabel ('Phase [°]")
plt.x1lim(0, f_ s / 2)
plt.ylim(-360, 0)
plt.yticks([-360, -270, -180, -90, 0])
plt.axvline(f_c, color='red')

plt.show()

Argument of H
Remove discontinuities
and convert to degrees

Bode Plot

—-20 1

—40

Magnitude [dB]

—60 1

-80 T T

60 80 100 120

140

160

180

—90 A

—180 ~

Phase [°]

—270 A

-360 T T

60 80 100 120
Frequency [Hz]

Comparison Between the Analog and Digital Filter

140

160

We can easily plot the Bode plots of the two filters on top of each other, in order to compare their properties.

180

@ J oUW N

from scipy.signal import butter,
import matplotlib.pyplot as plt
from math import pi
import numpy as np

freqz,

360 # Sample frequency in Hz
Cut-off frequency in Hz

Order of the butterworth

omega_c = 2 * pi * f c
omega_c_d = omega_c / f_s

Design the digital Butterworth filter

b d, a_d = butter(order, omega c_d / pi)
print ('Digital Coefficients')

print ("b =", b_d)

print("a =", a_d)

w, H d = freqz(b_d, a_d, 4096)

w *= f s / (2 * pi)

Design the analog Butterworth filter

b_a, a_a = butter(order, f_c,
print ('Analog Coefficients')

print ("b =", b_a)

print("a =", a_a)

w, H_a = fregs(b_a, a_a, w)

Plot the amplitude response

plt.subplot(2, 1, 1)
plt.suptitle('Bode Plot')

H_d dB = 20 * np.loglO(abs(H_d))

H a dB = 20 * np.loglO(abs(H_a))
plt.plot(w, H_d dB, color='blue', label=
plt.plot(w, H_a_dB, color='green',
plt.legend()

plt.ylabel ('Magnitude [dB]"'")

plt.xlim(0, £ s / 2)

plt.ylim(-80, 6)
plt.axvline(f_c,
plt.axhline (-3,

color="red'")
linewidth=0.8,

Plot the phase response
plt.subplot(2, 1, 2)

phi_d = np.angle (H_d)
phi_a = np.angle(H_a)
phi_d = np.unwrap(phi_d) * 180 / pi
phi_a = np.unwrap(phi_a) * 180 / pi

plt.plot(w, phi_d, color='blue')
plt.plot(w, phi_a, color='green')
plt.xlabel ('Frequency [Hz]")
plt.ylabel ('Phase [°]"')
plt.x1lim(0, £ s / 2)
plt.ylim(-360, 0)
plt.yticks ([-360,
plt.axvline(f_c,

-270, -180,
color="red'")

=90, 01)

plt.show ()

color="'black"',

fregs

filter

Cut-off angular frequency
Normalized cut-off frequency

(digital)

Print the coefficients

Calculate the frequency
Convert from rad/sample

response
to Hz

analog=True)

Print the coefficients

Calculate the frequency response

Convert modulus of H to dB

"Digital')

label="Analog')

linestyle="':")

Argument of H

Remove discontinuities
and convert to degrees

Bode Plot

—20 1

—40 -

Magnitude [dB]

—6071 _ pigital

—— Analog
-80 T

0 20

40

60

80 100 120

140

160

_90 4

—180 A

Phase [°]

—270 A

—-360 T

40

60

80 100 120
Frequency [Hz]

Discretization using Second Order Sections (SOS)

140

160

180

For higher order filters, small quantization errors on the transfer function coefficients can result in large errors on the pole and zero

locations.

A solution is to factor the transfer function into second order factors or sections.

Recall from the previous sections, and define o, H. 2,k and Hj as follows:

Second Order Sections

A
Y

:cot(w£>
fs
s z—1
wca_7z+1

/—’%
~|:

sz (s") even n
2l
Hl (s [1,2, Hzx(s') oddn

We'll use the same technique as before to substitute s’ into B 2,k (') using the pre-warped bilinear transform relation 8 to get the

discrete-time Butterworth polynomial By, (2):
By, (s') L2462 s’ +1

z—1\2 z—1
Bz,k(z) :72<) — QY +1

z+1 z+1
o (2 1) W (z—l)(z+1)+(z+1)2
e T 1) (z+1)2
B (z—l) —ozkfy(z—1)(z+1)+(z—i—1)2
a (z+1)2
_ (72 —apy+ 1),2:2 — (2'72 —2)z—|— (72—|—o¢k'y+1)
a (z—l—l)2
Hyp(2) = 224+2z+1
’ (72 —ary +1)22 = (292 = 2)z+ (v? + sy + 1)
1+227 14272

(V' —ary+1) = (29 = 2)z7 + (VP +ary + 1)z

The coefficients of the k-th factor of the discrete-time transfer function are thus:

bro =1
b1 =
bk72 =1

ary =7 —oyy+1
ay; = 2 (1 — 72)
ary = 7 +apy+1

First Order Section

For odd orders n, we need "2;1 second order sections and a single first order section.

Again, we'll use the the pre-warped bilinear transform relation 8:

s 1

H, (s)

v&ET +1
z+1
y(z—=1)+(2+1)
z+1
(v+1)z+(1—7)
1+ 271
(y+1)+(L—y)z!

This gives us the coefficients of the first order factor of the discrete-time transfer function:

bp =1

by =

ay = v+1
al :1—’}/

10

