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Pieter P

The factor  in the difference equation of the Exponential Moving Average filter is a number between zero and one. There are two
main ways to implement this multiplication by : Either we use floating point numbers and calculate the multiplication directly, or
we use integers, and express the multiplication as a division by .
Both floating point multiplication and integer division are relatively expensive operations, especially on embedded devices or
microcontrollers.

We can, however, choose the value for  in such a way that .
This is useful, because a division by a power of two can be replaced by a very fast right bitshift:

We can now rewrite the difference equation of the EMA with this optimization in mind:

There's one caveat though: this doesn't work for negative numbers. For example, if we try to calculate the integer division 
using this method, we get the following answer:

This is not what we expected! Integer division in programming languages such as C++ returns the quotient truncated towards zero,
so we would expect a value of . The result is close, but incorrect nonetheless.

This means we'll have to be careful not to use this trick on any negative numbers. In our difference equation, both the input  and
the output  will generally be positive numbers, so no problem there, but their difference can be negative. This is a problem.
We'll have to come up with a different representation of the difference equation that doesn't require us to divide any negative
numbers:

We now have to prove that  is greater than or equal to zero. We'll prove this using induction:

Base case: 

The value of  is the initial state of the system. We can just choose any value, so we'll pick a value that's greater than
or equal to zero: .

Induction step: 

C++ Implementation
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Given that , we can now use the difference equation to prove that  is also greater than zero:

We know that the input  is always zero or positive.
Since , and since  is zero or positive as well, we know that

.
Therefore, the entire right-hand side is always positive or zero, because it is a sum of two numbers that are themselves
greater than or equal to zero. 

A final improvement we can make to our division algorithm is to round the result to the nearest integer, instead of truncating it
towards zero.
Consider the rounded result of the division . We can then express it as a flooring of the result plus one half:

When  is a power of two, this is equivalent to:

We now have everything in place to write a basic implementation of the EMA in C++:

Note how we save  as the state, instead of just . Otherwise, we would have to calculate  twice (once to
calculate , and once on the next iteration to calculate ), and that would be unnecessary.
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Implementation in C++

1 #pragma once

2 #include <cstdint>     // uint8_t, uint16_t

3 #include <type_traits> // std::is_unsigned

4

5 /// The first Exponential Moving Average implementation for unsigned integers.

6 ///

7 /// @note   An improved implementation is presented further down the page.

8 template <uint8_t K, class uint_t = uint16_t>

9 class EMA {

10   public:

11     /// Update the filter with the given input and return the filtered output.

12     uint_t operator()(uint_t input) {

13         state += input;

14         uint_t output = (state + half) >> K;

15         state -= output;

16         return output;

17     }

18

19     static_assert(std::is_unsigned<uint_t>::value,

20                   "The `uint_t` type should be an unsigned integer, "

21                   "otherwise, the division using bit shifts is invalid.");

22     static_assert(K > 0, "K should be greater than zero");

23

24     /// Fixed point representation of one half, used for rounding.

25     constexpr static uint_t half = uint_t{1} << (K - 1);

26

27   private:

28     uint_t state = 0;

29 };

z[n] − 2−kz[n] z[n] 2−kz[n]
y[n] 2−kz[n − 1]
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It's possible to implement a signed division using bit shifts as well. The only difference is that we have to subtract 1 from the
dividend if it's negative.

On ARM and x86 platforms, the absolute performance difference between the signed and unsigned version is not too big, it requires
just a few more instructions. However, on some other architectures, like the AVR architecture used by some Arduino
microcontrollers, the division is by far the most expensive step of the EMA algorithm, so a slower signed division might have a
significant impact on the overall performance. In theory, it should only take a couple instructions to conditionally subtract 1, based
on the sign of the dividend, but this sometimes causes the compiler to refactor the entire division, resulting in a much slower
algorithm.

I provided two implementations of the signed division. Notice how on x86 and ARM the second one is faster, while on AVR, the
first one is faster. The unsigned division is included for reference.

The code was compiled using the -O2  optimization level.

Signed Rounding Division

Implementation of Signed and Unsigned Division by a Multiple of Two

1 constexpr unsigned int K = 3;

2

3 signed int div_s1(signed int val) {

4     int round = val + (1 << (K - 1));

5     if (val < 0)

6         round -= 1;

7     return round >> K;

8 }

9

10 signed int div_s2(signed int val) {

11     int neg = val < 0 ? 1 : 0;

12     return (val + (1 << (K - 1)) - neg) >> K;

13 }

14

15 unsigned int div_u(unsigned int val) {

16     return (val + (1 << (K - 1))) >> K;

17 }

Assembly Generated on x86_64 (GCC 9.2)

1 div_s1(int):

2         mov     eax, edi

3         not     eax

4         shr     eax, 31

5         lea     eax, [rax+3+rdi]

6         sar     eax, 3

7         ret

8

9 div_s2(int):

10         lea     eax, [rdi+4]

11         shr     edi, 31

12         sub     eax, edi

13         sar     eax, 3

14         ret

15

16 div_u(unsigned int):

17         lea     eax, [rdi+4]

18         shr     eax, 3

19         ret

Assembly Generated on ARM 64 (GCC 8.2)

1 div_s1(int):

2         mvn     w1, w0

3         add     w0, w0, w1, lsr 31

4         add     w0, w0, 3

5         asr     w0, w0, 3

6         ret

7

8 div_s2(int):

9         add     w1, w0, 4

10         sub     w0, w1, w0, lsr 31

11         asr     w0, w0, 3

12         ret

13

14 div_u(unsigned int):

15         add     w0, w0, 4

16         lsr     w0, w0, 3

17         ret
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Keep in mind that an int  on AVR is only 16 bits wide, whereas an int  on ARM or x86 is 32 bits wide.
If you use 32-bit integers on AVR, the result is even more atrocious.

You can experiment with the different implementations yourself on the Compiler Explorer.

The main takeaway from this section is that signed (rounding) division is more expensive than unsigned division.

Since the EMA is a linear filter, adding a constant offset to the input results in the same output, but with the same offset added to it.
This means that we don't have to worry about negative numbers, we can just add a constant offset to the negative inputs, resulting in
only positive numbers. At the output of the filter, the offset is simply removed again.

This approach turns out to be significantly more efficient than the signed divisions discussed above. It allows us to use only
unsigned rounding divisions, which are very cheap, and just a single extra subtraction to handle signed types. (Yes, just one, it turns
out that adding the offset to the input and subtracting it again from the output can be combined.)

The assumption that the EMA is a linear filter is not really valid anymore, because of the rounding and truncation errors introduced by the use of integers in the
algorithm. Luckily, the output of the filter turns out to be exactly the same, it doesn't matter if you use true signed rounding division or an unsigned rounding
division with offset.

The following snippet is an improved version of the previous implementation: it supports both signed and unsigned inputs, allows
initialization to a specific value, and has a check to prevent overflow.

Assembly Generated on AVR (GCC 5.3)

1 div_s1(int):

2         sbrc r25,7  # Skip if Bit in Register is Cleared: val >= 0

3         rjmp .L2

4                     # val >= 0

5         adiw r24,4  # Add Immediate to Word: val + (1 << (K - 1)) = val + 4

6         asr r25     # Arithmetic Shift Right: shift high byte (preserve sign)

7         ror r24     # Rotate Right through Carry: shift low byte

8         asr r25     # Two more times

9         ror r24

10         asr r25

11         ror r24

12         ret

13 .L2:                

14                     # val < 0

15         adiw r24,3  # Add Immediate to Word: val + (1 << (K - 1)) - 1 = val + 3

16         asr r25     # Arithmetic Shift Right: shift high byte (preserve sign)

17         ror r24     # Rotate Right through Carry: shift low byte

18         asr r25     # Two more times

19         ror r24

20         asr r25

21         ror r24

22         ret

23

24 div_s2(int):

25         movw r18,r24

26         subi r18,-4   # Subtract immediate: val + (1 << (K - 1)) = val + 4

27         sbci r19,-1   # Subtract Immediate with Carry: (low byte)

28         mov r24,r25

29         rol r24       # Rotate Left through Carry: C flag is now sign bit

30         clr r24       # Clear Register

31         rol r24       # Rotate Left through Carry: original sign bit is now lsb

32         movw r20,r18

33         sub r20,r24   # Subtract without Carry: val + 4 - neg

34         sbc r21,__zero_reg__  # Subtract with Carry: (low byte)

35         movw r24,r20

36         asr r25       # Arithmetic Shift Right: shift high byte (preserve sign)

37         ror r24       # Rotate Right through Carry: shift low byte

38         asr r25       # Two more times

39         ror r24

40         asr r25

41         ror r24

42         ret

43

44 div_u(unsigned int):

45         adiw r24,4  # Add Immediate to Word: val + (1 << (K - 1)) = val + 4

46         lsr r25     # Logical Shift Right: shift high byte (no sign extension)

47         ror r24     # Rotate Right through Carry: shift low byte

48         lsr r25     # Two more times

49         ror r24

50         lsr r25

51         ror r24

52         ret

A better alternative for signed division

Improved C++ implementation

https://godbolt.org/z/cmQJ7W
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1 #pragma once

2 #include <type_traits> // std::make_unsigned_t, make_signed_t, is_unsigned

3 #include <limits>      // std::numeric_limits

4 #include <cstdint>     // uint_fast16_t

5

6 /**

7  * @brief   Exponential moving average filter.

8  * 

9  * Fast integer EMA implementation where the weight factor is a power of two.

10  * 

11  * Difference equation: @f$ y[n] = \alpha·x[n]+(1-\alpha)·y[n-1] @f$

12  * where @f$ \alpha = \left(\frac{1}{2}\right)^{K} @f$, @f$ x @f$ is the

13  * input sequence, and @f$ y @f$ is the output sequence.

14  *

15  * [An in-depth explanation of the EMA filter](https://tttapa.github.io/Pages/Mathematics/Systems-and-Control-

Theory/Digital-filters/Exponential%20Moving%20Average/)

16  *

17  * @tparam  K

18  *          The amount of bits to shift by. This determines the location

19  *          of the pole in the EMA transfer function, and therefore the

20  *          cut-off frequency.  

21  *          The higher this number, the more filtering takes place.  

22  *          The pole location is @f$ 1 - 2^{-K} @f$.

23  * @tparam  input_t

24  *          The integer type to use for the input and output of the filter. 

25  *          Can be signed or unsigned.

26  * @tparam  state_t

27  *          The unsigned integer type to use for the internal state of the

28  *          filter. A fixed-point representation with @f$ K @f$ fractional

29  *          bits is used, so this type should be at least @f$ M + K @f$ bits

30  *          wide, where @f$ M @f$ is the maximum number of bits of the input.

31  *

32  * Some examples of different combinations of template parameters:

33  * 

34  * 1. Filtering the result of `analogRead`: analogRead returns an integer

35  *    between 0 and 1023, which can be represented using 10 bits, so 

36  *    @f$ M = 10 @f$. If `input_t` and `output_t` are both `uint16_t`,

37  *    the maximum shift factor `K` is @f$ 16 - M = 6 @f$. If `state_t`

38  *    is increased to `uint32_t`, the maximum shift factor `K` is 

39  *    @f$ 32 - M = 22 @f$.

40  * 2. Filtering a signed integer between -32768 and 32767: this can be 

41  *    represented using a 16-bit signed integer, so `input_t` is `int16_t`,

42  *    and @f$ M = 16 @f$. (2¹⁵ = 32768)

43  *    Let's say the shift factor `K` is 1, then the minimum width of 

44  *    `state_t` should be @f$ M + K = 17 @f$ bits, so `uint32_t` would be 

45  *    a sensible choice.

46  */

47 template <uint8_t K,

48           class input_t = uint_fast16_t,

49           class state_t = std::make_unsigned_t<input_t>>

50 class EMA {

51   public:

52     /// Constructor: initialize filter to zero or optional given value.

53     EMA(input_t initial = input_t{0}) { reset(initial); }

54

55     /// Reset the filter state so it outputs the given value.

56     void reset(input_t initial) {

57         state_t initial_s = static_cast<state_t>(initial);

58         state = zero + (initial_s << K) - initial_s;

59     }

60

61     /// Update the filter with the given input and return the filtered output.

62     input_t operator()(input_t input) {

63       state         += static_cast<state_t>(input);

64       state_t output = (state + half) >> K;

65       output        -= zero >> K;

66       state         -= output;

67       return static_cast<input_t>(output);

68     }

69

70     constexpr static state_t 

71       max_state  = std::numeric_limits<state_t>::max(),

72       half_state = max_state / 2 + 1,

73       zero       = std::is_unsigned<input_t>::value ? state_t{0} : half_state,

74       half       = K > 0 ? state_t{1} << (K - 1) : state_t{0};

75   

76     static_assert(std::is_unsigned<state_t>::value, 

77                   "state type should be unsigned");

78

79     static_assert(max_state >= std::numeric_limits<input_t>::max(),

80                   "state type cannot be narrower than input type");               

81

82     /// Verify the input range to make sure it's compatible with the shift

83     /// factor and the width of the state type.

84     template <class T>

85     constexpr static bool supports_range(T min, T max) {

86       using sstate_t = std::make_signed_t<state_t>;

87       return min <= max &&

88              min >= std::numeric_limits<input_t>::min() &&

89              max <= std::numeric_limits<input_t>::max() &&

90              (std::is_unsigned<input_t>::value

91                ? state_t(max) <= (max_state >> K)

92                : min >= -static_cast<sstate_t>(max_state >> (K + 1)) - 1 &&  

93                  max <= static_cast<sstate_t>(max_state >> (K + 1)));
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When the type is signed, an offset of  is added, where  is the number of bits used to represent the state variable. This
essentially shifts the value "zero" up to the middle of the range of the state.

To check the range of the input for specific template parameters, you can use the supports_range  method:

On most modern Arduinos, the code above should work fine. If you want to use an older 8-bit AVR-based Arduino, you'll find that
the necessary standard library headers are missing. In that case, you could use the stripped-down version below:

The idea to use a constant offset to deal with negative inputs originated in this PJRC forum thread. It also includes a discussion
about how the filter works, simulations comparing integer EMA implementations with and without rounding, a pure C
implementation, etc.

94     }

95

96   private:

97     state_t state;

98 };

2B−1 B

1 EMA<5, int_fast16_t, uint_fast16_t> filter;

2 static_assert(filter.supports_range(-1024, 1023),

3               "use a wider state or input type, or a smaller shift factor");

Arduino Example

1 template <uint8_t K, class uint_t = uint16_t>

2 class EMA {

3   public:

4     /// Update the filter with the given input and return the filtered output.

5     uint_t operator()(uint_t input) {

6         state += input;

7         uint_t output = (state + half) >> K;

8         state -= output;

9         return output;

10     }

11

12     static_assert(

13         uint_t(0) < uint_t(-1),  // Check that `uint_t` is an unsigned type

14         "The `uint_t` type should be an unsigned integer, otherwise, "

15         "the division using bit shifts is invalid.");

16

17     /// Fixed point representation of one half, used for rounding.

18     constexpr static uint_t half = uint_t{1} << (K - 1);

19

20   private:

21     uint_t state = 0;

22 };

23

24 void setup() {

25   Serial.begin(115200);

26   while (!Serial);

27 }

28

29 const unsigned long interval = 10000; // 10000 µs = 100 Hz

30

31 void loop() {

32   static EMA<2> filter;

33   static unsigned long prevMicros = micros() - interval;

34   if (micros() - prevMicros >= interval) {

35     int rawValue = analogRead(A0);

36     int filteredValue = filter(rawValue);

37     Serial.print(rawValue);

38     Serial.print('\t');

39     Serial.println(filteredValue);

40     prevMicros += interval;

41   }

42 }

Additional resources

https://forum.pjrc.com/threads/61941-Exponential-Moving-Average-How-does-it-work

