
1

Pieter P

A C-style cast is an explicit type conversion of the form (type)expression or type(expression) . For example:

C-style casts allow you to perform dangerous conversions, while suppressing any warnings or errors from the compiler, and with
complete disregard for the C++ type system.
Additionally, they do not clearly show the programmer's intent, and are hard to search for in a code base.

Some concrete issues:

1. They allow you to perform dubious casts between integers and pointers:

2. They allow you to cast away const and volatile qualifiers:

3. They allow you to cast between pointers to unrelated types:

All of these casts undermine the C++ type system and prevent the compiler from catching common bugs.

Consider one of the following safer alternatives to C-style casts.

Sometimes you don't need an explicit cast. Just let the type system do its thing.

In the case of literals, you can use a literal suffix to avoid a cast:

When you do need an explicit cast to a specific type, for example to select a specific function overload, use curly braces instead of
using parentheses. This creates a temporary of the given type. In cases where such a conversion is valid, the effect is the same as a
C-style cast, but invalid or narrowing type conversions are rightly rejected:

Don't use C-style casts

What is a C-style cast?

1 int i = 42;
2 float f = (float)i; // C-style cast
3 char c = char(i); // functional cast, equivalent to C-style cast

Why are C-style casts an issue?

1 int value = 42;
2 int *very_bad = (int *)value; // accidental int-to-pointer conversion
3
4 const char *message = "12345";
5 int bad = (int)message; // accidental pointer-to-int conversion
6 int also_bad = int(message); // idem

1 const char *message = "12345";
2 char *very_bad = (char *)message; // casts away const
3
4 volatile uint8_t buffer[8];
5 uint8_t *also_very_bad = (uint8_t *)buffer; // casts away volatile

1 struct Pineapple { /* ... */ };
2 class Bulldozer { /* ... */ };
3
4 Pineapple p;
5 Bulldozer *b = (Bulldozer *)&p; // b points to a pineapple, not a bulldozer

What to use instead

No cast

1 float bad = (float)123;
2 float good = 123.f;

Use braces

https://en.cppreference.com/w/cpp/language/explicit_cast

2

error: invalid conversion from ‘const char*’ to ‘int’ [-fpermissive]
 2 | int better = int {message}; // compile-time error (as it should)
 | ^~~~~~~
 | |
 | const char*

Sensible conversions are allowed, for example, casting an integer to a wider integer, or explicitly converting an integer to
milliseconds:

When you need to force a narrowing conversion, use static_cast<type>(expression) .
The advantage of static_cast is that it disallows many questionable casts that would violate the rules of the type system, such
as casting away qualifiers or converting between unrelated types;

error: invalid ‘static_cast’ from type ‘const char*’ to type ‘char*’
 2 | char *little_better = static_cast<char *>(message); // compile-time error (as it should)
 | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~

error: invalid ‘static_cast’ from type ‘Pineapple*’ to type ‘Bulldozer*’
 5 | Bulldozer *b = static_cast<Bulldozer *>(&p); // compile-time error (as it should)
 | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~

For safely casting polymorphic types, e.g. converting a pointer-to-base to a pointer-to-derived in an inheritance hierarchy, use
dynamic_cast .

If you really need a more powerful (read: dangerous) cast, you might need a reinterpret_cast , e.g. to convert between
integers and pointers or to convert pointers to objects to pointers to arrays of bytes.
If you need to cast away const or volatile qualifiers, you can use const_cast .

Both reinterpret_cast and const_cast come with huge caveats, making it very easy to shoot yourself in the foot and
invoke Undefined Behavior. They should generally only be used in low-level code or when dealing with old C APIs, and demand
good encapsulation and an even better justification. Keep in mind that reinterpret_cast cannot be used for type punning:
Despite its name, you cannot use it to interpret a variable of one type as a different type (except in some very limited cases, see the
cppreference link above for details).

If you're unconvinced by these arguments, you might want to have a look at what the official C++ Core Guidelines have to say
about casting:

ES.48: Avoid casts
ES.49: If you must use a cast, use a named cast (as opposed to a C-style cast)
ES.50: Don't cast away const
ES.64: Use the T{e} notation for construction
Pro.safety: Type-safety profile

1 const char *message = "12345";
2 int better = int {message}; // compile-time error (as it should)

1 auto i = long {42}; // okay
2 auto ms = std::chrono::milliseconds {i}; // okay

Use named casts

1 const char *message = "12345";
2 char *little_better = static_cast<char *>(message); // compile-time error (as it should)

4 Pineapple p;
5 Bulldozer *b = static_cast<Bulldozer *>(&p); // compile-time error (as it should)

C++ Core Guidelines

https://en.cppreference.com/w/cpp/language/static_cast
https://en.cppreference.com/w/cpp/language/dynamic_cast
https://en.cppreference.com/w/cpp/language/reinterpret_cast
https://en.cppreference.com/w/cpp/language/const_cast
https://en.cppreference.com/w/cpp/language/ub
https://tttapa.github.io/Pages/Programming/Cpp/Practices/type-punning.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es48-avoid-casts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es49-if-you-must-use-a-cast-use-a-named-cast
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es50-dont-cast-away-const
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es64-use-the-tenotation-for-construction
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#prosafety-type-safety-profile

