
1

Pieter P

According to Wikipedia, “type punning is any programming technique that subverts or circumvents the type system of a
programming language in order to achieve an effect that would be difficult or impossible to achieve within the bounds of the formal
language”.
A classic example is the Quake III fast inverse square root function, where the bits of an IEEE 754 floating-point number are
interpreted as a 32-bit integer:

Other uses include serialization and deserialization, where floating-point numbers or other types are converted to and from arrays of
bytes to be transmitted over a network or stored to a file.

In the previous example, an invalid C-style pointer cast was used to carry out the type punning. Another commonly used but equally
incorrect method makes use of (or abuses) a union:

You cannot use a union for type punning because you are not allowed to first write to one member of the union, and then read from
a different one. [cppreference:union]

Specifically, in the second example above, writing to u.f  makes it the active member, starting its lifetime. [class.union.general] At
most one member can be active at any given time.
Reading from the inactive member u.bytes  is then not allowed, because its lifetime never began, and reading an object before the
beginning of its lifetime invokes Undefined Behavior. [basic.life]

Note: In C, the situation is different, C99 and later standards explicitly allow type punning using unions. [C11: footnote 95]

The C-style casts in the first example are equivalent to reinterpret_cast  expressions. The rules for such casts are quite
complicated, see e.g. cppreference: reinterpret_cast. The casts required for type punning fall under items 5 and 6 on that web page,
and these casts are only allowed when the type aliasing rules (sometimes called the strict aliasing rule) are satisfied. However, the
whole point of type punning is that these type aliasing rules are not fulfilled.
In the first example, float  and long  are not similar types [conv.qual], so the aliasing rule is violated, and dereferencing the pointer
resulting from the cast invokes Undefined Behavior.

One important exception to the strict aliasing rule are the character types (unsigned) char  and std::byte: you can inspect
the object representation of any object as an array of bytes through pointers to these character types.

Don't use unions or pointer casts for type
punning

What is type punning?

1 float y = number;
2 long  i = *(long *) &y;                 // evil floating point bit level hacking
3 i       = 0x5f3759df - (i >> 1);        // what the fuck? 
4 y       = *(float *) &i;

1 union {
2     float x;
3     std::byte bytes[sizeof(x)];
4 } u;
5 u.x = 12.34f;
6 write_to_file(u.bytes, sizeof(u.bytes)); // Error: Undefined Behavior

Why can't I use a union for type punning?

Why can't I use a pointer or reference cast for type punning?

http://localhost:5741/Pages/Programming/Cpp/Practices/type-punning.html
https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://tttapa.github.io/Pages/Programming/Cpp/Practices/c-style-casts.html
https://en.cppreference.com/w/cpp/language/union#Explanation
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4868.pdf#page.285
https://en.cppreference.com/w/cpp/language/ub
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4868.pdf#page.62
https://open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf#page=101
https://en.cppreference.com/w/cpp/language/reinterpret_cast
https://en.cppreference.com/w/cpp/language/reinterpret_cast#Type_aliasing
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4868.pdf#page.97
https://en.cppreference.com/w/cpp/language/ub


2

From C++20 onwards, you can use the std::bit_cast  function from the <bit>  header. [cppreference:bit_cast] It performs the
type punning in a safe way, additionally checking that both types have the same size, and that they are TriviallyCopyable.

The fast inverse square root example can be fixed as follows:

Before C++20, the only valid way to perform type punning was to use the memcpy  function, copying the object representation
from an object of one type to another object of a different type.

It should be noted that this does not mean that an actual call to the C library function memcpy  will be emitted. Compiler developers
are aware of this use of memcpy , and completely optimize it out for type punning use cases, you won't see a call to memcpy  even
with optimizations disabled (-O0).

Another valid version of the inverse square root code could be:

The memcpy  function can also be used to fix the second example of converting a float to the bytes it consists of:

In many cases related to serialization, using memcpy  or bit_cast  is unnecessary, thanks to the exception to the type aliasing
rules for character types.

For example, to write the bytes representing a float  to a file, one could use a cast to a pointer to a character type:

Keep in mind though that this is an exception to the rule. It would not be valid to do the same in reverse, for example:

You cannot access the memory occupied by the bytes  variable through a pointer to float , because there is no value of type
float  at that address that is within its lifetime.

In the previous example of interpreting an array of bytes as a float , the main problem was that no value of type float  was
within its lifetime at that address. In C++23, you can explicitly start the lifetime of objects of implicit-lifetime type
[cppreference:ImplicitLifetimeType] using the std::start_lifetime_as  function. This is especially useful for deserialization,
where you may want to reinterpret an array of bytes that you read from a file or from a socket as a struct with a known layout.

What to use instead

std::bit_cast

1 float y = number;
2 auto  i = std::bit_cast<uint32_t>(y);   // evil floating point bit level hacking
3 i       = 0x5f3759df - (i >> 1);        // what the fuck? 
4 y       = std::bit_cast<float>(i);

std::memcpy

1 float y = number;
2 uint32_t i;
3 static_assert(sizeof(i) == sizeof(y), "error: different sizes");
4 std::memcpy(&i, &y, sizeof(i));         // evil floating point bit level hacking
5 i = 0x5f3759df - (i >> 1);              // what the fuck? 
6 std::memcpy(&y, &i, sizeof(y));

1 float x = 12.34f;
2 uint8_t bytes[sizeof(x)];
3 std::memcpy(bytes, &x, sizeof(x));

Cast to a character array

1 float x = 12.34f;
2 write_to_file(reinterpret_cast<const std::byte *>(&x), sizeof(x)); // Ok

1 uint8_t bytes[] {0xA4, 0x70, 0x45, 0x41};
2 float x = *reinterpret_cast<float *>(bytes); // Error: Undefined Behavior

Explicitly starting lifetimes

1 alignas(float) uint8_t bytes[] {0xA4, 0x70, 0x45, 0x41};
2 float x = *std::start_lifetime_as<float>(bytes); // Ok

https://en.cppreference.com/w/cpp/numeric/bit_cast
https://en.cppreference.com/w/cpp/named_req/TriviallyCopyable
https://en.cppreference.com/w/cpp/named_req/ImplicitLifetimeType
https://en.cppreference.com/w/cpp/memory/start_lifetime_as


3

Note that the alignment of the buffer has to be correct, otherwise, the behavior is undefined.

If you're unconvinced by what was presented on this page, you might want to have a look at what the official C++ Core Guidelines
have to say about type punning:

ES.48: Avoid casts
C.183: Don’t use a union  for type punning

C++ Core Guidelines

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es48-avoid-casts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c183-dont-use-a-union-for-type-punning

