
1

Pieter P

The toolchain includes a tool called gdbserver . This program will run on the Raspberry Pi, and we'll connect to it using gdb on
our computer. First install gdbserver to the Pi:

$ scp ~/opt/x-tools/armv6-rpi-linux-gnueabihf/armv6-rpi-linux-gnueabihf/debug-root/usr/bin/gdbserver RPi0:~
$ ssh RPi0 sudo mv gdbserver /usr/local/bin
$ ssh RPi0 gdbserver --version

GNU gdbserver (crosstool-NG UNKNOWN) 10.2
Copyright (C) 2021 Free Software Foundation, Inc.
gdbserver is free software, covered by the GNU General Public License.
This gdbserver was configured as "armv6-rpi-linux-gnueabihf"

By default, Raspberry Pi OS preloads a custom memcpy implementation. When debugging, GDB needs that library in the sysroot
as well. Install it using:

$ echo "deb http://archive.raspberrypi.org/debian/ buster main" | sudo tee /var/lib/schroot/chroots/rpizero-buster-
armhf/etc/apt/sources.list.d/raspi.list

$ wget -qO- https://archive.raspberrypi.org/debian/raspberrypi.gpg.key | sudo schroot -c source:rpizero-buster-armhf -u root
-d / -- apt-key add -

$ sudo sbuild-apt rpizero-buster-armhf apt-get update
$ sudo sbuild-apt rpizero-buster-armhf apt-get install raspi-copies-and-fills

This is not necessary when your Raspberry Pi runs Ubuntu, for example.

To debug ARM devices, you need an ARM version of GDB. The toolchain includes armv6-rpi-linux-gnueabihf-gdb that
you can use.

Alternatively, you can install the gdb-multiarch package using:

$ sudo apt install gdb-multiarch

To make sure everything works correctly, let's start GDB from a command line and debug the program we compiled and copied to
the Pi on the previous page:

$ armv6-rpi-linux-gnueabihf-gdb ./build/hello

Set the sysroot and start gdbserver over SSH. Then type c or continue to run the program:

(gdb) set sysroot /var/lib/schroot/chroots/rpizero-buster-armhf
(gdb) target remote | ssh RPi0 gdbserver - '~/hello' --name Pieter
(gdb) continue

Use q or Ctrl+D to quit GDB.

Remote debugging

Installing gdbserver to the Raspberry Pi

Installing extra libraries to the sysroot

Installing GDB on your computer

Running GDB manually from the command line

2

The example project includes task.json and launch.json files that automatically copy the binary to the Raspberry Pi and
start gdbserver when you hit F5 . This allows you to set breakpoints, inspect the call stack and variables, and so on, like you would
during a normal native debug session.
The “C/C++” extension by Microsoft is required for debugging support.

Before you start debugging, edit launch.json and edit the paths to the sysroot as appropriate. You might want to edit the SSH
configuration and destination path in tasks.json as well.

For some reason, the standard output of the program is not visible in VSCode.

Debugging using VSCode

https://tttapa.github.io/Pages/Raspberry-Pi/C++-Development-RPiOS/images/gdb-cmd.png
https://tttapa.github.io/Pages/Raspberry-Pi/C++-Development-RPiOS/images/gdb-vscode.png

