Development setup

Pieter P

Prepare for cross-compilation
Install developer tools

$ sudo apt install ubuntu-dev-tools

We're only using these tools to easily manage chroot environments and to run apt to manage cross-compilation dependencies. If
you're interested, you can find more information on the Ubuntu and Debian Wiki, but most of it is far beyond the scope of this
guide: https://wiki.ubuntu.com/SimpleSbuild, https://wiki.debian.org/sbuild.

Create a Raspberry Pi OS root filesystem

We'll use debootstrap to create a minimal Raspberry Pi OS root filesystem in a folder on our computer. It has all the system
libraries of the Raspberry Pi installed and you can install third-party libraries as well, these are necessary to link your executables
when cross-compiling.

This root filesystem folder is often referred to as the sysroot, and it will later be passed as an option to CMake, the compiler, the
linker, GDB, etc. so they can find the necessary files (we cannot use the actual root file system of our computer, because the
libraries there have the wrong architecture, most likely x86_64, but we need armv6 libraries).

$ wget -qO0- https://archive.raspbian.org/raspbian.public.key | gpg --import -
$ mk-sbuild --arch=armhf buster --debootstrap-mirror=http://raspbian.raspberrypi.org/raspbian --name=rpizero-buster --
debootstrap-keyring "$HOME/.gnupg/pubring.kbx --merged-usr" --skip-proposed --skip-updates --skip-security

If this is the first time you use mk - sbuild, you'll be asked to edit your ~/ . sbuildrc file. Since we're not actually going to be
publishing any packages, you can just accept the defaults. After this first run, reboot your computer (or log out and back in again, or
use su - $USER, to flush group memberships), and run the second command again:

$ mk-sbuild --arch=armhf buster --debootstrap-mirror=http://raspbian.raspberrypi.org/raspbian --name=rpizero-buster --
debootstrap-keyring "$HOME/.gnupg/pubring.kbx --merged-usr" --skip-proposed --skip-updates --skip-security

This will install a minimal version of Raspberry Pi OS in a folder on your computer. The Ubuntu development tools allow you to
install libraries into this folder using apt install, which makes it very easy to manage the cross-compilation dependencies.

The --merged-usr option is included in the - -debootstrap-keyring option so that it is passed on to debootstrap,
the mk-sbuild script currently lacks this option.

If something went wrong or if you no longer need it, you can use sudo sbuild-destroychroot rpizero-buster-
armhf, it will give instructions how to remove the root filesystem and the schroot configuration.

If you used a different name for your build environment, remember to replace it in the commands throughout the rest of the tutorial.
Install the toolchain

The cross-compilation toolchains in the Ubuntu repositories are not compatible with Raspberry Pi OS, so you'll have to build or
install your own. It's easiest to just download the crosstool-NG toolchain from https://github.com/tttapa/docker-arm-cross-toolchain.

In this example, I'll be using the ARMv6 toolchain, because it is compatible with all Raspberry Pi boards. If you only need to
support newer boards, or if you're using a 64-bit version of Raspberry Pi OS, you might want to use the ARMv8 or AArch64
toolchain (see the README of tttapa/docker-arm-cross-toolchain for more details).

$ mkdir -p ~/opt
$ wget -qO- https://github.com/tttapa/docker-arm-cross-toolchain/releases/latest/download/x-tools-armv6-rpi-linux-
gnueabihf.tar.xz | tar xJ -C ~/opt

This installs the toolchain to ~/opt/x-tools/armv6-rpi-linux-gnueabihf. You can add it to your path using:
$ echo 'export PATH="$HOME/opt/x-tools/armv6-rpi-linux-gnueabihf/bin:$PATH"' >> ~/.profile

This will only take effect after you log out and back in again, so you might want to do that now, or execute the following command
to add it to your path in the current terminal:

https://wiki.ubuntu.com/SimpleSbuild
https://wiki.debian.org/sbuild
https://github.com/tttapa/docker-arm-cross-toolchain
https://github.com/tttapa/docker-arm-cross-toolchain

$ export PATH="$HOME/opt/x-tools/armvé-rpi-linux-gnueabihf/bin:$PATH"

Verify that the toolchain is installed correctly by running:

$ armv6-rpi-linux-gnueabihf-g++ --version
armv6-rpi-linux-gnueabihf-g++ (crosstool-NG UNKNOWN) 11.2.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

You can find more information about this toolchain and instructions on how to customize it here.
Install the C++ standard library to the Pi

Out of the box, Raspberry Pi OS uses an older compiler and has an older version of the C++ standard library installed. Since we're
going to use a new toolchain, we need to install a newer version of 1ibstdc++ to the Pi to be able to run our programs:

$ scp ~/opt/x-tools/armv6-rpi-linux-gnueabihf/armv6-rpi-linux-gnueabihf/sysroot/1lib/libstdc++.50.6.0.29 RPi0:~
$ ssh RPiO bash << 'EOF'
sudo mkdir -p /usr/local/lib/arm-linux-gnueabihf
sudo mv libstdc++.s0.6.0.29 $_
sudo ldconfig
EOF

The library is installed in /usr/local/1lib so it doesn't interfere with the libraries managed by the system in /usr/1ib.

Also do the same for the root filesystem on your computer, this comes in handy when debugging later:

$ sudo mkdir -p /var/lib/schroot/chroots/rpizero-buster-armhf/usr/local/lib/arm-1linux-gnueabihf
$ sudo cp ~/opt/x-tools/armv6-rpi-linux-gnueabihf/armv6-rpi-linux-gnueabihf/sysroot/1lib/libstdc++.50.6.0.29 $_
$ sudo schroot -c source:rpizero-buster-armhf -u root -d / ldconfig

Install and configure the IDE

Install Visual Studio Code

You can download and install VSCode from https://code.visualstudio.com/Download.

Install the extensions

You'll need the following extensions:

e “clangd” by LLVM Extensions
e “CMake Tools” by Microsoft

https://tttapa.github.io/Pages/Raspberry-Pi/C++-Development/Building-The-Toolchain.html
https://code.visualstudio.com/Download

EXTENSIONS: ... S O = Extension: clangd X

clangd

clangd llvm-vs-code-extensions.vscode-clangd
clangd o0.1.12
C and C++ completion, navigati...
LLVM Extensions) C and C++ completion, navigation, and insights

LLVM Extensions | < 196,261 * % % %% | Repository | License | v0.1.12

ClangDiag 0.0.7
Performs clang-format diagno...
Aayush Chawla Install

Disable Uninstall »» 8% Thisextension is enabled globally.

Details Feature Contributions Changelog

clangd

Provides C/C++ language IDE features for VS Code using

code completion

compile errors and warnings
go-to-definition and cross references
include management

code formatting

simple refactorings

Setup
clangd server

The extension requires the clangd language server. You will be prompted to download it if it's not found on your PATH. (Automatic installation is

possible on x86-64 Linux, Windows, and Mac).

IF you have an old version of clangd installed on your system already, you can run "Check for clangd language server update" from the command

palette.
Project setup

clangd is based on the clang C++ compiler, and understands even complex C++ code. However, you must tell clangd how your project is built (compile
flags). A compile_commands.json can usually be generated by your build system (e.g. by setting -DCMAKE_EXPORT_COMPILE_COMMANDS=1 when
building with CMake, or with).

EXTENSIONS: ... ¥ O = Extension: CMake Tools X

cmake tools

cMake TOO'.S ms-vscode.cmake-tools
CMake Tools 1.7.3 . . .
Extended CMake support in Vi... Microsoft | «» 2,385,410 1 8 8.8 &8¢ Repository | License | v1.7.3

Microsoft & Extended CMake support in Visual Studio Code
‘CMake 00.17

CMake langage support for Vis...
twxs 3 This extension is recommended based on the files you recently opened.

Disable Uninstall » 5% This extension is enabled globally.

R Tools 0.0.25
R Tools (IntelliSense, signature... Details Feature Contributions Changelog Extension Pack

Mikhail Arkhipov Install

React Native Tools 1.5.2
Debugging and integrated co... CMake TOOIS

Microsoft Install

XML Tools 2.1 provides the native developer a full-featured, convenient, and powerful workflow For CMake-based projects in Visual Studio Code.
XML Formatting, XQuery, and ...

Josh Johnson Install Important dOC “nks
AZ AL Dev Tools/AL C... 3.0.11

AZ AL Development Tools: AL ...

Andrzej Zwierzchowski Install

Spring Boot Tools 1.26.0
Provides validation and conten...
Pivotal Install

Tools 0.12
private tools
vsQuicker Install

Cordova Tools 223
Code-hinting, debugging and i....
Microsoft Install

Lt R LR e (152 Issues? Questions? Feature requests?
Language server, editing tools ...
Microsoft Install PLEASE, if you experience any problems, have any questions, or have an idea for a new feature, create an issue on

Unity Tools 1.2.12
Various tools to help with Unit...
Tobiah Zarlez Install

This extension itself does not provide language support For the CMake scripting language. For that we recommend

Microsoft Open Source Code of Conduct
Azure CLI Tools o050

Tools for developing and runni... This project has adopted the . For more information see the or contact

Microsaft Inckall

Installing clangd

If this is the first time you're using the clangd extension, you'll have to install the language server. When you open a C++ file for the
first time, the extension will automatically give you a prompt:

https://tttapa.github.io/Pages/Raspberry-Pi/C++-Development-RPiOS/images/clangd.png
https://tttapa.github.io/Pages/Raspberry-Pi/C++-Development-RPiOS/images/cmake-tools.png

i) The 'clangd' language server was not found on your PATH.

Would you like to download and install clangd 12.0.0?

Source: clangd (Extension) Install

clangd 12.0.0 is now installed.

Source: clangd (Extension) Reload window

Once the language server is installed, you get all features you'd expect from an IDE, such as semantic syntax highlighting, go-to-
definition, autocomplete, documentation, refactoring options, etc.

@ EXPLORER main.cpp X
v OPEN EDITORS main.cpp
X main.cpp
* RPI-CROSS-CPP-DEVELOPMENT nclude <boost/program opt ons.hpp>
5 g feret: namespace po = boost::program options;
o #include <ios
.gitignore g T
gitig #include <string>
A CMakeLists.txt

main.cpp int main(int argc, char *argv[]) {
> B try {
> g .vscode
> po::options_description desc("Options");
desc.add options()

(
(" instance-method add_options

> BB cmake

— class boost::program_options::options_description_easy_init
S Returns an object of implementation-defined type suitable for adding options to

options_description. The returned object will have overloaded operator() with parameter
type matching 'option_description’ constructors. Calling the operator will create new
option_description instance and add it.

ublic: boost::program options::options_description easy init
add_options()
return 0;

std::string name;
if (vm.count("name")) {
name = vm["name"].as<std::string>();
} else {
std::cout << "Please enter your name: ";
> TIMELINE std::getline(std::cin, name);
X PP master & ®O0AO0 @ clangd:idle (@ CMake: [Debug]:Ready ¥ [Raspberry Pi(armve)] % Build [all ¥ D> cpp|+/ main.cpp Ln1,Col37 Spaces:4 UTF-8 LF C++ & [

> OUTLINE

https://tttapa.github.io/Pages/Raspberry-Pi/C++-Development-RPiOS/images/install-clangd-crop.png
https://tttapa.github.io/Pages/Raspberry-Pi/C++-Development-RPiOS/images/clangd-installed-crop.png
https://tttapa.github.io/Pages/Raspberry-Pi/C++-Development-RPiOS/images/clangd-working.png

