
1

Pieter P

This page explains how to build Python 3 from source on Ubuntu.

First, install GCC, GNU Make and GNU Wget if you haven't already.

$ sudo apt update
$ sudo apt install gcc g++ make wget

Also install the dependencies to build Python and its modules.

$ sudo apt install zlib1g-dev libbz2-dev libssl-dev uuid-dev libffi-dev libreadline-dev libsqlite3-dev tk-dev libbz2-dev
libncurses5-dev libreadline6-dev libgdbm-dev liblzma-dev

On Ubuntu 18.04 and later, you'll need compatibility development files for GNU dbm.

$ sudo apt install libgdbm-compat-dev

You can try to build Python without these dependencies, but then some of the optional modules will not be built.

Next, download and extract the Python source code.

$ version="3.8.2"
$ python="Python-$version"
$ cd /tmp
$ wget "https://www.python.org/ftp/python/$version/$python.tgz" # Download
$ tar xf $python.tgz # Extract

You can now tune the settings for your build now. I'll use the standard version with optimizations, link-time optimizations, and IPv6
enabled. --enable-shared builds the shared libraries for Python. This allows other programs to use and embed Python.
The installation location is ~/.local . This is a user-level installation, it's just for the current user, doesn't require sudo, and won't
overwrite the Python version that comes with your Linux distribution.

On most distributions, ~/.local/lib is not in the runtime linker's search path. Therefore, we need to specify the rpath during
the linking stage.

$ cd "$python"
$./configure --prefix="$HOME/.local" \

 --enable-ipv6 \
 --enable-shared \
 --with-lto --enable-optimizations \
 'LDFLAGS=-Wl,-rpath,\$$ORIGIN/../lib'

To see all options, run the following command.

$./configure --help

Actually build Python. This can easily take up to an hour, especially if you have optimizations enabled, because then it will run all
tests.
The -j option tells make to compile multiple files in parallel, nproc gives the number of CPU cores of the system.

$ make -j$(nproc)

Python

Install dependencies and tools

Download and extract the source code

Configure the build settings

Build Python

2

Finally, install Python to the location specified as prefix in the configure step.

There are two possible install options: Either you install Python as the main/default version: this means that it will be installed as
python3 , and it will replace the previous default Python 3 version at the install location. The version you're installing will become
the new default.
The second option is to install Python as an "alternative" version. The default Python 3 version will be preserved, and the new
version will be installed as python3.8 .

$ make install # Replace default version

$ make altinstall # Install alongside existing version, preserve default

If the installation location ~/.local/bin is not in your PATH , you'll have to add it yourself.

$ export PATH="$HOME/.local/bin:$PATH"

To make it permanent, add it to your ~/.profile file, so it is added to your PATH every time you log in.

$ echo 'export PATH="$HOME/.local/bin:$PATH"' >> ~/.profile

Python itself will find its shared libraries without problems, because of the rpath linker option we added previously. However, if
you are using other programs that require these libraries, you'll have to add ~/.local/lib to your LD_LIBRARY_PATH
environment variable.

$ export LD_LIBRARY_PATH="$HOME/.local/lib"

Setting LD_LIBRARY_PATH is not the most elegant solution, so if you have root privileges, you can add the ~/.local/lib
folder to the ld configuration folder:

$ echo "$HOME/.local/lib" | sudo tee -a /etc/ld.so.conf.d/home.local.conf
$ sudo ldconfig

Here's a shell script that executes the previous steps for you.

Install Python

Adding Python to the PATH

Finding the shared libraries

Shell Script

3

You can download it here. Then allow execution and run it:

$ chmod +x python.sh
$./python.sh

Ubuntu 16.04 - Python 3.7.3
Ubuntu 16.04 - Python 3.8.0
Ubuntu 18.04 - Python 3.7.4
Ubuntu 19.10 - Python 3.8.1
Ubuntu 19.10 - Python 3.8.2

python.sh
7 version="3.8.2"
8 builddir="/tmp"
9 python="Python-$version"
10 prefix="$HOME/.local"
11
12 # Install dependencies and build tools
13 sudo apt-get update
14 sudo apt-get install -y \
15 zlib1g-dev libbz2-dev libssl-dev uuid-dev libffi-dev libreadline-dev \
16 libsqlite3-dev tk-dev libbz2-dev libncurses5-dev libreadline6-dev \
17 libgdbm-dev liblzma-dev \
18 gcc g++ make wget
19
20 # For Ubuntu 18.04 and later, another dependency is required for GNU dbm
21 source /etc/os-release
22 if (($(echo "$VERSION_ID >= 18.04" | bc -l)));
23 then
24 sudo apt-get install libgdbm-compat-dev
25 fi
26
27 # Download and extract the Python source code
28 mkdir -p "$builddir"
29 cd $builddir
30 if [! -d "$python"]
31 then
32 wget "https://www.python.org/ftp/python/$version/$python.tgz"
33 tar xf $python.tgz
34 fi
35
36 cd "$python"
37 ./configure --prefix="$prefix" \
38 --enable-ipv6 \
39 --enable-shared \
40 --with-lto --enable-optimizations \
41 'LDFLAGS=-Wl,-rpath,\$$ORIGIN/../lib'
42
43 make -j$(($(nproc) * 2))
44 make altinstall

Tested on

https://tttapa.github.io/Pages/Ubuntu/Software-Installation/resources/python.sh

