Python API Reference

Anderson Acceleration

class quala._quala.AndersonAccel

C++ documentation: quala::AndersonAccel

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: quala._quala.AndersonAccel, params: quala._quala.AndersonAccelParams) -> None

  2. __init__(self: quala._quala.AndersonAccel, params: dict) -> None

  3. __init__(self: quala._quala.AndersonAccel, params: quala._quala.AndersonAccelParams, n: int) -> None

  4. __init__(self: quala._quala.AndersonAccel, params: dict, n: int) -> None

compute(*args, **kwargs)

Overloaded function.

  1. compute(self: quala._quala.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]], x_k_aa: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None

  2. compute(self: quala._quala.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]

current_history(self: quala._quala.AndersonAccel) int
initialize(self: quala._quala.AndersonAccel, g_0: numpy.ndarray[numpy.float64[m, 1]], r_0: numpy.ndarray[numpy.float64[m, 1]]) None
reset(self: quala._quala.AndersonAccel) None
resize(self: quala._quala.AndersonAccel, n: int) None
property params

L-BFGS

class quala._quala.LBFGS

C++ documentation: quala::LBFGS

class Sign

C++ documentation quala::LBFGS::Sign

Members:

Positive

Negative

__init__(self: quala._quala.LBFGS.Sign, value: int) None
Negative = <Sign.Negative: 1>
Positive = <Sign.Positive: 0>
property name
property value
__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: quala._quala.LBFGS, params: quala._quala.LBFGSParams) -> None

  2. __init__(self: quala._quala.LBFGS, params: dict) -> None

  3. __init__(self: quala._quala.LBFGS, params: quala._quala.LBFGSParams, n: int) -> None

  4. __init__(self: quala._quala.LBFGS, params: dict, n: int) -> None

apply(*args, **kwargs)

Overloaded function.

  1. apply(self: quala._quala.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float) -> bool

  2. apply(self: quala._quala.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float, J: List[int]) -> bool

current_history(self: quala._quala.LBFGS) int
reset(self: quala._quala.LBFGS) None
resize(self: quala._quala.LBFGS, n: int) None
s(self: quala._quala.LBFGS, arg0: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable]
scale_y(self: quala._quala.LBFGS, factor: float) None
update(self: quala._quala.LBFGS, xk: numpy.ndarray[numpy.float64[m, 1]], xkp1: numpy.ndarray[numpy.float64[m, 1]], pk: numpy.ndarray[numpy.float64[m, 1]], pkp1: numpy.ndarray[numpy.float64[m, 1]], sign: quala._quala.LBFGS.Sign = <Sign.Positive: 0>, forced: bool = False) bool
update_sy(self: quala._quala.LBFGS, sk: numpy.ndarray[numpy.float64[m, 1]], yk: numpy.ndarray[numpy.float64[m, 1]], pkp1Tpkp1: float, forced: bool = False) bool
static update_valid(params: quala._quala.LBFGSParams, yTs: float, sTs: float, pTp: float) bool
y(self: quala._quala.LBFGS, arg0: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable]
α(self: quala._quala.LBFGS, arg0: int) float
ρ(self: quala._quala.LBFGS, arg0: int) float
Negative = <Sign.Negative: 1>
Positive = <Sign.Positive: 0>
property n
property params

All

Quala Quasi-Newton algorithms

class quala._quala.AndersonAccel

C++ documentation: quala::AndersonAccel

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: quala._quala.AndersonAccel, params: quala._quala.AndersonAccelParams) -> None

  2. __init__(self: quala._quala.AndersonAccel, params: dict) -> None

  3. __init__(self: quala._quala.AndersonAccel, params: quala._quala.AndersonAccelParams, n: int) -> None

  4. __init__(self: quala._quala.AndersonAccel, params: dict, n: int) -> None

compute(*args, **kwargs)

Overloaded function.

  1. compute(self: quala._quala.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]], x_k_aa: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) -> None

  2. compute(self: quala._quala.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]

current_history(self: quala._quala.AndersonAccel) int
initialize(self: quala._quala.AndersonAccel, g_0: numpy.ndarray[numpy.float64[m, 1]], r_0: numpy.ndarray[numpy.float64[m, 1]]) None
reset(self: quala._quala.AndersonAccel) None
resize(self: quala._quala.AndersonAccel, n: int) None
property params
class quala._quala.AndersonAccelParams

C++ documentation: quala::AndersonAccelParams

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: quala._quala.AndersonAccelParams) -> None

  2. __init__(self: quala._quala.AndersonAccelParams, **kwargs) -> None

to_dict(self: quala._quala.AndersonAccelParams) dict
property memory
class quala._quala.BroydenGood

C++ documentation: quala::BroydenGood

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: quala._quala.BroydenGood, params: quala._quala.BroydenGoodParams) -> None

  2. __init__(self: quala._quala.BroydenGood, params: dict) -> None

  3. __init__(self: quala._quala.BroydenGood, params: quala._quala.BroydenGoodParams, n: int) -> None

  4. __init__(self: quala._quala.BroydenGood, params: dict, n: int) -> None

apply(self: quala._quala.BroydenGood, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float = - 1) bool
current_history(self: quala._quala.BroydenGood) int
reset(self: quala._quala.BroydenGood) None
resize(self: quala._quala.BroydenGood, n: int) None
update(self: quala._quala.BroydenGood, xk: numpy.ndarray[numpy.float64[m, 1]], xkp1: numpy.ndarray[numpy.float64[m, 1]], pk: numpy.ndarray[numpy.float64[m, 1]], pkp1: numpy.ndarray[numpy.float64[m, 1]], forced: bool = False) bool
update_sy(self: quala._quala.BroydenGood, sk: numpy.ndarray[numpy.float64[m, 1]], yk: numpy.ndarray[numpy.float64[m, 1]], forced: bool = False) bool
property params
class quala._quala.BroydenGoodParams

C++ documentation: quala::BroydenGoodParams

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: quala._quala.BroydenGoodParams) -> None

  2. __init__(self: quala._quala.BroydenGoodParams, **kwargs) -> None

to_dict(self: quala._quala.BroydenGoodParams) dict
property force_pos_def
property memory
property min_div_abs
property powell_damping_factor
property restarted
class quala._quala.LBFGS

C++ documentation: quala::LBFGS

class Sign

C++ documentation quala::LBFGS::Sign

Members:

Positive

Negative

__init__(self: quala._quala.LBFGS.Sign, value: int) None
Negative = <Sign.Negative: 1>
Positive = <Sign.Positive: 0>
property name
property value
__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: quala._quala.LBFGS, params: quala._quala.LBFGSParams) -> None

  2. __init__(self: quala._quala.LBFGS, params: dict) -> None

  3. __init__(self: quala._quala.LBFGS, params: quala._quala.LBFGSParams, n: int) -> None

  4. __init__(self: quala._quala.LBFGS, params: dict, n: int) -> None

apply(*args, **kwargs)

Overloaded function.

  1. apply(self: quala._quala.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float) -> bool

  2. apply(self: quala._quala.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float, J: List[int]) -> bool

current_history(self: quala._quala.LBFGS) int
reset(self: quala._quala.LBFGS) None
resize(self: quala._quala.LBFGS, n: int) None
s(self: quala._quala.LBFGS, arg0: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable]
scale_y(self: quala._quala.LBFGS, factor: float) None
update(self: quala._quala.LBFGS, xk: numpy.ndarray[numpy.float64[m, 1]], xkp1: numpy.ndarray[numpy.float64[m, 1]], pk: numpy.ndarray[numpy.float64[m, 1]], pkp1: numpy.ndarray[numpy.float64[m, 1]], sign: quala._quala.LBFGS.Sign = <Sign.Positive: 0>, forced: bool = False) bool
update_sy(self: quala._quala.LBFGS, sk: numpy.ndarray[numpy.float64[m, 1]], yk: numpy.ndarray[numpy.float64[m, 1]], pkp1Tpkp1: float, forced: bool = False) bool
static update_valid(params: quala._quala.LBFGSParams, yTs: float, sTs: float, pTp: float) bool
y(self: quala._quala.LBFGS, arg0: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable]
α(self: quala._quala.LBFGS, arg0: int) float
ρ(self: quala._quala.LBFGS, arg0: int) float
Negative = <Sign.Negative: 1>
Positive = <Sign.Positive: 0>
property n
property params
class quala._quala.LBFGSParams

C++ documentation: quala::LBFGSParams

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: quala._quala.LBFGSParams) -> None

  2. __init__(self: quala._quala.LBFGSParams, **kwargs) -> None

to_dict(self: quala._quala.LBFGSParams) dict
property cbfgs
property force_pos_def
property memory
property min_abs_s
property min_div_fac
class quala._quala.LBFGSParamsCBFGS

C++ documentation: :cpp:member:`quala::LBFGSParams::CBFGSParams `

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: quala._quala.LBFGSParamsCBFGS) -> None

  2. __init__(self: quala._quala.LBFGSParamsCBFGS, **kwargs) -> None

to_dict(self: quala._quala.LBFGSParamsCBFGS) dict
property α
property ϵ