Go to the source code of this file.
|
int | n = 10 |
|
int | ε = 1e-12 |
|
| rng = nprand.default_rng(seed=123) |
|
| A = rng.random(size=(n, n)) |
|
| Q |
|
| D = np.diag(rng.normal(scale=4, size=(n, ))) |
|
| q = rng.normal(scale=1, size=(n, )) |
|
| x_ = cs.SX.sym('x', n) |
|
float | px = x_ + 0.2 * cs.sin(x_[::-1]) |
|
float | f_ = 0.5 * (x_.T @ A @ px) + cs.dot(q, x_) |
|
| f = cs.Function("f", [x_], [f_]) |
|
| grad_f_ = cs.gradient(f_, x_) |
|
| grad_f = cs.Function("grad_f", [x_], [grad_f_]) |
|
| hess_f_ = cs.jacobian(grad_f_, x_) |
|
| hess_f = cs.Function("hess_f", [x_], [hess_f_]) |
|
int | L = la.norm(D)**2 |
|