Python API Reference#

Anderson Acceleration#

class quala._quala.AndersonAccel

C++ documentation: quala::AndersonAccel

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: quala._quala.AndersonAccel, params: quala._quala.AndersonAccelParams) -> None

  2. __init__(self: quala._quala.AndersonAccel, params: dict) -> None

  3. __init__(self: quala._quala.AndersonAccel, params: quala._quala.AndersonAccelParams, n: int) -> None

  4. __init__(self: quala._quala.AndersonAccel, params: dict, n: int) -> None

compute(self: quala._quala.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
compute_inplace(self: quala._quala.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]], x_k_aa: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
current_history(self: quala._quala.AndersonAccel) int
initialize(self: quala._quala.AndersonAccel, g_0: numpy.ndarray[numpy.float64[m, 1]], r_0: numpy.ndarray[numpy.float64[m, 1]]) None
property params
reset(self: quala._quala.AndersonAccel) None
resize(self: quala._quala.AndersonAccel, n: int) None

L-BFGS#

class quala._quala.LBFGS

C++ documentation: quala::LBFGS

Negative = <Sign.Negative: 1>
Positive = <Sign.Positive: 0>
class Sign

C++ documentation quala::LBFGS::Sign

Members:

Positive

Negative

Negative = <Sign.Negative: 1>
Positive = <Sign.Positive: 0>
__init__(self: quala._quala.LBFGS.Sign, value: int) None
property name
property value
__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: quala._quala.LBFGS, params: quala._quala.LBFGSParams) -> None

  2. __init__(self: quala._quala.LBFGS, params: dict) -> None

  3. __init__(self: quala._quala.LBFGS, params: quala._quala.LBFGSParams, n: int) -> None

  4. __init__(self: quala._quala.LBFGS, params: dict, n: int) -> None

apply(*args, **kwargs)

Overloaded function.

  1. apply(self: quala._quala.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float) -> bool

  2. apply(self: quala._quala.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float, J: List[int]) -> bool

current_history(self: quala._quala.LBFGS) int
property n
property params
reset(self: quala._quala.LBFGS) None
resize(self: quala._quala.LBFGS, n: int) None
s(self: quala._quala.LBFGS, arg0: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable]
scale_y(self: quala._quala.LBFGS, factor: float) None
update(self: quala._quala.LBFGS, xk: numpy.ndarray[numpy.float64[m, 1]], xkp1: numpy.ndarray[numpy.float64[m, 1]], pk: numpy.ndarray[numpy.float64[m, 1]], pkp1: numpy.ndarray[numpy.float64[m, 1]], sign: quala._quala.LBFGS.Sign = <Sign.Positive: 0>, forced: bool = False) bool
update_sy(self: quala._quala.LBFGS, sk: numpy.ndarray[numpy.float64[m, 1]], yk: numpy.ndarray[numpy.float64[m, 1]], pkp1Tpkp1: float, forced: bool = False) bool
static update_valid(params: quala._quala.LBFGSParams, yTs: float, sTs: float, pTp: float) bool
y(self: quala._quala.LBFGS, arg0: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable]
α(self: quala._quala.LBFGS, arg0: int) float
ρ(self: quala._quala.LBFGS, arg0: int) float

All#

Quala Quasi-Newton algorithms

class quala._quala.AndersonAccel#

C++ documentation: quala::AndersonAccel

__init__(*args, **kwargs)#

Overloaded function.

  1. __init__(self: quala._quala.AndersonAccel, params: quala._quala.AndersonAccelParams) -> None

  2. __init__(self: quala._quala.AndersonAccel, params: dict) -> None

  3. __init__(self: quala._quala.AndersonAccel, params: quala._quala.AndersonAccelParams, n: int) -> None

  4. __init__(self: quala._quala.AndersonAccel, params: dict, n: int) -> None

compute(self: quala._quala.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]#
compute_inplace(self: quala._quala.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]], x_k_aa: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None#
current_history(self: quala._quala.AndersonAccel) int#
initialize(self: quala._quala.AndersonAccel, g_0: numpy.ndarray[numpy.float64[m, 1]], r_0: numpy.ndarray[numpy.float64[m, 1]]) None#
property params#
reset(self: quala._quala.AndersonAccel) None#
resize(self: quala._quala.AndersonAccel, n: int) None#
class quala._quala.AndersonAccelParams#

C++ documentation: quala::AndersonAccelParams

__init__(*args, **kwargs)#

Overloaded function.

  1. __init__(self: quala._quala.AndersonAccelParams) -> None

  2. __init__(self: quala._quala.AndersonAccelParams, **kwargs) -> None

property memory#
property min_div#
to_dict(self: quala._quala.AndersonAccelParams) dict#
class quala._quala.BroydenGood#

C++ documentation: quala::BroydenGood

__init__(*args, **kwargs)#

Overloaded function.

  1. __init__(self: quala._quala.BroydenGood, params: quala._quala.BroydenGoodParams) -> None

  2. __init__(self: quala._quala.BroydenGood, params: dict) -> None

  3. __init__(self: quala._quala.BroydenGood, params: quala._quala.BroydenGoodParams, n: int) -> None

  4. __init__(self: quala._quala.BroydenGood, params: dict, n: int) -> None

apply(self: quala._quala.BroydenGood, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float = -1) bool#
current_history(self: quala._quala.BroydenGood) int#
property params#
reset(self: quala._quala.BroydenGood) None#
resize(self: quala._quala.BroydenGood, n: int) None#
update(self: quala._quala.BroydenGood, xk: numpy.ndarray[numpy.float64[m, 1]], xkp1: numpy.ndarray[numpy.float64[m, 1]], pk: numpy.ndarray[numpy.float64[m, 1]], pkp1: numpy.ndarray[numpy.float64[m, 1]], forced: bool = False) bool#
update_sy(self: quala._quala.BroydenGood, sk: numpy.ndarray[numpy.float64[m, 1]], yk: numpy.ndarray[numpy.float64[m, 1]], forced: bool = False) bool#
class quala._quala.BroydenGoodParams#

C++ documentation: quala::BroydenGoodParams

__init__(*args, **kwargs)#

Overloaded function.

  1. __init__(self: quala._quala.BroydenGoodParams) -> None

  2. __init__(self: quala._quala.BroydenGoodParams, **kwargs) -> None

property force_pos_def#
property memory#
property min_div_abs#
property min_stepsize#
property powell_damping_factor#
property restarted#
to_dict(self: quala._quala.BroydenGoodParams) dict#
class quala._quala.LBFGS#

C++ documentation: quala::LBFGS

Negative = <Sign.Negative: 1>#
Positive = <Sign.Positive: 0>#
class Sign#

C++ documentation quala::LBFGS::Sign

Members:

Positive

Negative

Negative = <Sign.Negative: 1>#
Positive = <Sign.Positive: 0>#
__init__(self: quala._quala.LBFGS.Sign, value: int) None#
property name#
property value#
__init__(*args, **kwargs)#

Overloaded function.

  1. __init__(self: quala._quala.LBFGS, params: quala._quala.LBFGSParams) -> None

  2. __init__(self: quala._quala.LBFGS, params: dict) -> None

  3. __init__(self: quala._quala.LBFGS, params: quala._quala.LBFGSParams, n: int) -> None

  4. __init__(self: quala._quala.LBFGS, params: dict, n: int) -> None

apply(*args, **kwargs)#

Overloaded function.

  1. apply(self: quala._quala.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float) -> bool

  2. apply(self: quala._quala.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float, J: List[int]) -> bool

current_history(self: quala._quala.LBFGS) int#
property n#
property params#
reset(self: quala._quala.LBFGS) None#
resize(self: quala._quala.LBFGS, n: int) None#
s(self: quala._quala.LBFGS, arg0: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable]#
scale_y(self: quala._quala.LBFGS, factor: float) None#
update(self: quala._quala.LBFGS, xk: numpy.ndarray[numpy.float64[m, 1]], xkp1: numpy.ndarray[numpy.float64[m, 1]], pk: numpy.ndarray[numpy.float64[m, 1]], pkp1: numpy.ndarray[numpy.float64[m, 1]], sign: quala._quala.LBFGS.Sign = <Sign.Positive: 0>, forced: bool = False) bool#
update_sy(self: quala._quala.LBFGS, sk: numpy.ndarray[numpy.float64[m, 1]], yk: numpy.ndarray[numpy.float64[m, 1]], pkp1Tpkp1: float, forced: bool = False) bool#
static update_valid(params: quala._quala.LBFGSParams, yTs: float, sTs: float, pTp: float) bool#
y(self: quala._quala.LBFGS, arg0: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable]#
α(self: quala._quala.LBFGS, arg0: int) float#
ρ(self: quala._quala.LBFGS, arg0: int) float#
class quala._quala.LBFGSParams#

C++ documentation: quala::LBFGSParams

__init__(*args, **kwargs)#

Overloaded function.

  1. __init__(self: quala._quala.LBFGSParams) -> None

  2. __init__(self: quala._quala.LBFGSParams, **kwargs) -> None

property cbfgs#
property force_pos_def#
property memory#
property min_abs_s#
property min_div_fac#
to_dict(self: quala._quala.LBFGSParams) dict#
class quala._quala.LBFGSParamsCBFGS#

C++ documentation: :cpp:member:`quala::LBFGSParams::CBFGSParams `

__init__(*args, **kwargs)#

Overloaded function.

  1. __init__(self: quala._quala.LBFGSParamsCBFGS) -> None

  2. __init__(self: quala._quala.LBFGSParamsCBFGS, **kwargs) -> None

to_dict(self: quala._quala.LBFGSParamsCBFGS) dict#
property α#
property ϵ#
class quala._quala.LimitedMemoryQR#
property Q#
property R#
__init__(*args, **kwargs)#

Overloaded function.

  1. __init__(self: quala._quala.LimitedMemoryQR) -> None

  2. __init__(self: quala._quala.LimitedMemoryQR, n: int, m: int) -> None

add_column(self: quala._quala.LimitedMemoryQR, v: numpy.ndarray[numpy.float64[m, 1]]) None#
clear_reorth_count(self: quala._quala.LimitedMemoryQR) None#
property current_history#
property history#
property m#
property max_eig#
property min_eig#
property n#
property num_columns#
remove_column(self: quala._quala.LimitedMemoryQR) None#
property reorth_count#
reset(self: quala._quala.LimitedMemoryQR) None#
resize(self: quala._quala.LimitedMemoryQR, arg0: int, arg1: int) None#
property size#
solve(*args, **kwargs)#

Overloaded function.

  1. solve(self: quala._quala.LimitedMemoryQR, b: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], x: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], tol: float = 0) -> None

  2. solve(self: quala._quala.LimitedMemoryQR, b: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], tol: float = 0) -> numpy.ndarray[numpy.float64[m, n]]