Python API Reference#
Anderson Acceleration#
- class quala._quala.AndersonAccel
C++ documentation:
quala::AndersonAccel
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: quala._quala.AndersonAccel, params: quala._quala.AndersonAccelParams) -> None
__init__(self: quala._quala.AndersonAccel, params: dict) -> None
__init__(self: quala._quala.AndersonAccel, params: quala._quala.AndersonAccelParams, n: int) -> None
__init__(self: quala._quala.AndersonAccel, params: dict, n: int) -> None
- compute(self: quala._quala.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
- compute_inplace(self: quala._quala.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]], x_k_aa: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None
- current_history(self: quala._quala.AndersonAccel) int
- initialize(self: quala._quala.AndersonAccel, g_0: numpy.ndarray[numpy.float64[m, 1]], r_0: numpy.ndarray[numpy.float64[m, 1]]) None
- property params
- reset(self: quala._quala.AndersonAccel) None
- resize(self: quala._quala.AndersonAccel, n: int) None
L-BFGS#
- class quala._quala.LBFGS
C++ documentation:
quala::LBFGS
- Negative = <Sign.Negative: 1>
- Positive = <Sign.Positive: 0>
- class Sign
C++ documentation
quala::LBFGS::Sign
Members:
Positive
Negative
- Negative = <Sign.Negative: 1>
- Positive = <Sign.Positive: 0>
- __init__(self: quala._quala.LBFGS.Sign, value: int) None
- property name
- property value
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: quala._quala.LBFGS, params: quala._quala.LBFGSParams) -> None
__init__(self: quala._quala.LBFGS, params: dict) -> None
__init__(self: quala._quala.LBFGS, params: quala._quala.LBFGSParams, n: int) -> None
__init__(self: quala._quala.LBFGS, params: dict, n: int) -> None
- apply(*args, **kwargs)
Overloaded function.
apply(self: quala._quala.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float) -> bool
apply(self: quala._quala.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float, J: List[int]) -> bool
- current_history(self: quala._quala.LBFGS) int
- property n
- property params
- reset(self: quala._quala.LBFGS) None
- resize(self: quala._quala.LBFGS, n: int) None
- s(self: quala._quala.LBFGS, arg0: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable]
- scale_y(self: quala._quala.LBFGS, factor: float) None
- update(self: quala._quala.LBFGS, xk: numpy.ndarray[numpy.float64[m, 1]], xkp1: numpy.ndarray[numpy.float64[m, 1]], pk: numpy.ndarray[numpy.float64[m, 1]], pkp1: numpy.ndarray[numpy.float64[m, 1]], sign: quala._quala.LBFGS.Sign = <Sign.Positive: 0>, forced: bool = False) bool
- update_sy(self: quala._quala.LBFGS, sk: numpy.ndarray[numpy.float64[m, 1]], yk: numpy.ndarray[numpy.float64[m, 1]], pkp1Tpkp1: float, forced: bool = False) bool
- static update_valid(params: quala._quala.LBFGSParams, yTs: float, sTs: float, pTp: float) bool
- y(self: quala._quala.LBFGS, arg0: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable]
- α(self: quala._quala.LBFGS, arg0: int) float
- ρ(self: quala._quala.LBFGS, arg0: int) float
All#
Quala Quasi-Newton algorithms
- class quala._quala.AndersonAccel#
C++ documentation:
quala::AndersonAccel
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: quala._quala.AndersonAccel, params: quala._quala.AndersonAccelParams) -> None
__init__(self: quala._quala.AndersonAccel, params: dict) -> None
__init__(self: quala._quala.AndersonAccel, params: quala._quala.AndersonAccelParams, n: int) -> None
__init__(self: quala._quala.AndersonAccel, params: dict, n: int) -> None
- compute(self: quala._quala.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] #
- compute_inplace(self: quala._quala.AndersonAccel, g_k: numpy.ndarray[numpy.float64[m, 1]], r_k: numpy.ndarray[numpy.float64[m, 1]], x_k_aa: numpy.ndarray[numpy.float64[m, 1], flags.writeable]) None #
- current_history(self: quala._quala.AndersonAccel) int #
- initialize(self: quala._quala.AndersonAccel, g_0: numpy.ndarray[numpy.float64[m, 1]], r_0: numpy.ndarray[numpy.float64[m, 1]]) None #
- property params#
- reset(self: quala._quala.AndersonAccel) None #
- resize(self: quala._quala.AndersonAccel, n: int) None #
- class quala._quala.AndersonAccelParams#
C++ documentation:
quala::AndersonAccelParams
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: quala._quala.AndersonAccelParams) -> None
__init__(self: quala._quala.AndersonAccelParams, **kwargs) -> None
- property memory#
- property min_div#
- to_dict(self: quala._quala.AndersonAccelParams) dict #
- class quala._quala.BroydenGood#
C++ documentation:
quala::BroydenGood
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: quala._quala.BroydenGood, params: quala._quala.BroydenGoodParams) -> None
__init__(self: quala._quala.BroydenGood, params: dict) -> None
__init__(self: quala._quala.BroydenGood, params: quala._quala.BroydenGoodParams, n: int) -> None
__init__(self: quala._quala.BroydenGood, params: dict, n: int) -> None
- apply(self: quala._quala.BroydenGood, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float = -1) bool #
- current_history(self: quala._quala.BroydenGood) int #
- property params#
- reset(self: quala._quala.BroydenGood) None #
- resize(self: quala._quala.BroydenGood, n: int) None #
- update(self: quala._quala.BroydenGood, xk: numpy.ndarray[numpy.float64[m, 1]], xkp1: numpy.ndarray[numpy.float64[m, 1]], pk: numpy.ndarray[numpy.float64[m, 1]], pkp1: numpy.ndarray[numpy.float64[m, 1]], forced: bool = False) bool #
- update_sy(self: quala._quala.BroydenGood, sk: numpy.ndarray[numpy.float64[m, 1]], yk: numpy.ndarray[numpy.float64[m, 1]], forced: bool = False) bool #
- class quala._quala.BroydenGoodParams#
C++ documentation:
quala::BroydenGoodParams
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: quala._quala.BroydenGoodParams) -> None
__init__(self: quala._quala.BroydenGoodParams, **kwargs) -> None
- property force_pos_def#
- property memory#
- property min_div_abs#
- property min_stepsize#
- property powell_damping_factor#
- property restarted#
- to_dict(self: quala._quala.BroydenGoodParams) dict #
- class quala._quala.LBFGS#
C++ documentation:
quala::LBFGS
- Negative = <Sign.Negative: 1>#
- Positive = <Sign.Positive: 0>#
- class Sign#
C++ documentation
quala::LBFGS::Sign
Members:
Positive
Negative
- Negative = <Sign.Negative: 1>#
- Positive = <Sign.Positive: 0>#
- __init__(self: quala._quala.LBFGS.Sign, value: int) None #
- property name#
- property value#
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: quala._quala.LBFGS, params: quala._quala.LBFGSParams) -> None
__init__(self: quala._quala.LBFGS, params: dict) -> None
__init__(self: quala._quala.LBFGS, params: quala._quala.LBFGSParams, n: int) -> None
__init__(self: quala._quala.LBFGS, params: dict, n: int) -> None
- apply(*args, **kwargs)#
Overloaded function.
apply(self: quala._quala.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float) -> bool
apply(self: quala._quala.LBFGS, q: numpy.ndarray[numpy.float64[m, 1], flags.writeable], γ: float, J: List[int]) -> bool
- current_history(self: quala._quala.LBFGS) int #
- property n#
- property params#
- reset(self: quala._quala.LBFGS) None #
- resize(self: quala._quala.LBFGS, n: int) None #
- s(self: quala._quala.LBFGS, arg0: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable] #
- scale_y(self: quala._quala.LBFGS, factor: float) None #
- update(self: quala._quala.LBFGS, xk: numpy.ndarray[numpy.float64[m, 1]], xkp1: numpy.ndarray[numpy.float64[m, 1]], pk: numpy.ndarray[numpy.float64[m, 1]], pkp1: numpy.ndarray[numpy.float64[m, 1]], sign: quala._quala.LBFGS.Sign = <Sign.Positive: 0>, forced: bool = False) bool #
- update_sy(self: quala._quala.LBFGS, sk: numpy.ndarray[numpy.float64[m, 1]], yk: numpy.ndarray[numpy.float64[m, 1]], pkp1Tpkp1: float, forced: bool = False) bool #
- static update_valid(params: quala._quala.LBFGSParams, yTs: float, sTs: float, pTp: float) bool #
- y(self: quala._quala.LBFGS, arg0: int) numpy.ndarray[numpy.float64[m, 1], flags.writeable] #
- α(self: quala._quala.LBFGS, arg0: int) float #
- ρ(self: quala._quala.LBFGS, arg0: int) float #
- class quala._quala.LBFGSParams#
C++ documentation:
quala::LBFGSParams
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: quala._quala.LBFGSParams) -> None
__init__(self: quala._quala.LBFGSParams, **kwargs) -> None
- property cbfgs#
- property force_pos_def#
- property memory#
- property min_abs_s#
- property min_div_fac#
- to_dict(self: quala._quala.LBFGSParams) dict #
- class quala._quala.LBFGSParamsCBFGS#
C++ documentation: :cpp:member:`quala::LBFGSParams::CBFGSParams `
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: quala._quala.LBFGSParamsCBFGS) -> None
__init__(self: quala._quala.LBFGSParamsCBFGS, **kwargs) -> None
- to_dict(self: quala._quala.LBFGSParamsCBFGS) dict #
- property α#
- property ϵ#
- class quala._quala.LimitedMemoryQR#
- property Q#
- property R#
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: quala._quala.LimitedMemoryQR) -> None
__init__(self: quala._quala.LimitedMemoryQR, n: int, m: int) -> None
- add_column(self: quala._quala.LimitedMemoryQR, v: numpy.ndarray[numpy.float64[m, 1]]) None #
- clear_reorth_count(self: quala._quala.LimitedMemoryQR) None #
- property current_history#
- property history#
- property m#
- property max_eig#
- property min_eig#
- property n#
- property num_columns#
- remove_column(self: quala._quala.LimitedMemoryQR) None #
- property reorth_count#
- reset(self: quala._quala.LimitedMemoryQR) None #
- resize(self: quala._quala.LimitedMemoryQR, arg0: int, arg1: int) None #
- property size#
- solve(*args, **kwargs)#
Overloaded function.
solve(self: quala._quala.LimitedMemoryQR, b: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], x: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous], tol: float = 0) -> None
solve(self: quala._quala.LimitedMemoryQR, b: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], tol: float = 0) -> numpy.ndarray[numpy.float64[m, n]]